Caspian Journal of Applied Mathematics, Ecology and Economics V. 7, No 2, 2019, December ISSN 1560-4055

Asymptotic Behavior of the Distribution Function of the Ahlfors-Beurling Transform

Kh.I. Nebiyeva

Abstract. In the present paper, we study the asymptotic behavior of the distribution function of the Ahlfors-Beurling transform of a Lebesgue integrable function as $\lambda \to +\infty$ and as $\lambda \to 0+$.

Key Words and Phrases: Ahlfors–Beurling transform, distribution function, asymptotic behavior.

2010 Mathematics Subject Classifications: 44A15, 30C62, 42B20

1. Introduction

The Ahlfors-Beurling transform of a function $f \in L_p(C)$, $1 \le p < \infty$ is defined as the following singular integral:

$$\left(Bf\right)\left(z\right)=-\frac{1}{\pi}\underset{\varepsilon\rightarrow0}{\lim}\int_{\left\{ w\in C:\left|z-w\right|>\varepsilon\right\} }\frac{f\left(w\right)}{\left(z-w\right)^{2}}dm\left(w\right).$$

The Ahlfors–Beurling transform is one of the important operators in complex analysis. It is the "Hilbert transform" on complex plane. It has been shown in [1,3,6,9,11,15,17] that this transform plays an essential role in applications to the theory of quasiconformal mappings and to the Beltrami equation with discontinuous coefficients.

From the theory of singular integrals (see [13]) it is known that the Ahlfors–Beurling transform is a bounded operator in the space $L_p(C)$, $1 , that is, if <math>f \in L_p(C)$, then $B(f) \in L_p(C)$ and

$$||Bf||_{L_p} \le C_p ||f||_{L_p}. \tag{1}$$

In the case $f \in L_1(C)$ only the weak inequality holds,

$$m\{z \in C: |(Bf)(z)| > \lambda\} \le \frac{C_1}{\lambda} ||f||_{L_1},$$
 (2)

where m stands for the Lebesgue measure, C_p , C_1 are constants independent of f and $m\{z \in C: |(Bf)(z)| > \lambda\}$ - the distribution function of the Ahlfors-Beurling transform of the function f.

In [2,4,5,7,8,10,12,14,16] the boundedness of the operator B in other function spaces (in the spaces of Sobolev, Besov, Campanato, Morrey, etc.) was studied.

In the present paper, we study the asymptotic behavior of the distribution function of the Ahlfors-Beurling transform of a Lebesgue integrable function as $\lambda \to +\infty$ and as $\lambda \to 0+$.

2. Asymptotic behavior of the distribution function of the Ahlfors-Beurling transform as $\lambda \to +\infty$

In this section we studying the asymptotic behavior of the distribution function of the Ahlfors-Beurling transform as $\lambda \to +\infty$.

Theorem 1. Let $f \in L_1(C)$. Then the equation

$$\lim_{\lambda \to +\infty} \lambda m \left\{ z \in C : |(Bf)(z)| > \lambda \right\} = 0 \tag{3}$$

holds.

Proof. Since $f \in L_1(C)$, then for every $\varepsilon > 0$ there exists $n \in N$ and R > 0 such that

$$||f - [f]_R^n||_{L_1} \le \frac{\varepsilon}{4C_1},\tag{4}$$

where $[f]_R^n(z) = [f]^n \chi(B(0;R))(z)$, $[f(z)]^n = f(z)$ for $|f(z)| \le n$, $[f(z)]^n = 0$ for |f(z)| > n, $\chi(B(0;R))(z)$ - characteristic function of the circle $B(0;R) = \{z \in C : |z| < R\}$. It follows from (1) and (4) that for every $\lambda > 0$ the inequality

$$m\left\{z \in C: |B\left(f - [f]_{R}^{n}\right)(z)| > \frac{\lambda}{2}\right\} \leq \frac{2C_{1}}{\lambda} \|f - [f]_{R}^{n}\|_{L_{1}} \leq \frac{\varepsilon}{2\lambda}$$
 (5)

holds. Since the function $[f]_R^n(z)$ is bounded, then we get that $[f]_R^n \in L_p(C)$ for each $p \ge 1$. It follows that $B[f]_R^n \in L_p(C)$ for each p > 1. Denote

$$F_1(z) = B[f]_R^n(z) \cdot \chi(B(0; 2R)), F_2(z) = B[f]_R^n(z) \cdot \chi(C \setminus B(0; 2R)).$$

Then

$$B\left[f\right]_{R}^{n}\left(z\right)=F_{1}\left(z\right)+F_{2}\left(z\right),$$

The function $F_1(z)$ is concentrated on the closed circle $\overline{B(0; 2R)}$, and the function $F_2(z)$ is concentrated on the set $C \setminus B(0; 2R)$. For every p > 1 from the inclusion $B[f]_R^n \in L_p(C)$ it follows that $F_1(z) \in L_p(C)$. Since the function $F_1(z)$ is concentrated on the bounded set, then we have that $F_1(z) \in L_1(C)$. Then for sufficiently large values of $\lambda > 0$

$$\frac{\lambda}{2}m\left\{z \in C: |F_{1}\left(z\right)| > \lambda/2\right\} \leq \int_{\left\{z \in C: |F_{1}\left(z\right)| > \lambda/2\right\}} |F_{1}\left(z\right)| dm\left(z\right) < \frac{\varepsilon}{4}. \tag{6}$$

On the other hand, for any $z \in C \setminus B(0; 2r)$ we have

$$|B\left([f]_{R}^{n}\right)(z)| = \frac{1}{\pi} \int_{B(0;R)} \frac{|[f]_{R}^{n}(w)|}{|z-w|^{2}} dm\left(w\right) \le$$

$$\le \frac{1}{\pi R^{2}} \int_{B(0;R)} |[f]_{R}^{n}(w)| dm\left(w\right) = \frac{1}{\pi R^{2}} ||[f]_{R}^{n}||_{L_{1}} \le \frac{1}{\pi R^{2}} ||f||_{L_{1}}.$$

This shows that the function $F_2(z)$ is bounded. Then it follows from (6) that for sufficiently large values of $\lambda > 0$

$$m\left\{z\in C:\;\left|B\left[f\right]_{R}^{n}\left(z\right)\right|>\lambda/2\right\}\leq m\left\{z\in C:\;\left|F_{1}\left(z\right)\right|>\lambda/2\right\}<\frac{\varepsilon}{2\lambda}.\tag{7}$$

It follows from (5) and (7) that for sufficiently large values of $\lambda > 0$

$$m\left\{ z\in C:\ \left|\left(Bf\right)\left(z\right)\right|>\lambda/2\right\} \leq$$

$$\leq m\left\{z\in C:\;\left|B\left[f\right]_{R}^{n}\left(z\right)\right|>\lambda/2\right\}+m\left\{z\in C:\;\left|B\left(f-\left[f\right]_{R}^{n}\right)\left(z\right)\right|>\frac{\lambda}{2}\right\}<\frac{\varepsilon}{2\lambda}+\frac{\varepsilon}{2\lambda}=\frac{\varepsilon}{\lambda}.$$

This shows that the equation (3) holds. Theorem 1 is proved. ◀

3. Asymptotic behavior of the distribution function of the Ahlfors-Beurling transform as $\lambda \to 0+$

In this section we studying the asymptotic behavior of the distribution function of the Ahlfors-Beurling transform as $\lambda \to 0+$.

Theorem 2. Let $f \in L_1(C)$. Then the equation

$$\lim_{\lambda \to 0+} \lambda m \left\{ z \in C : |(Bf)(z)| > \lambda \right\} = \left| \int_C f(z) \, dm(z) \right| \tag{8}$$

holds.

At first we prove the auxiliary lemma.

Lemma 1. If $f \in L_1(C)$ and $\int_C f(z) dm(z) = 0$, then the equation

$$m\left\{z \in C: |(Bf)(z)| > \lambda\right\} = o\left(1/\lambda\right), \lambda \to 0+\tag{9}$$

holds.

Proof of Lemma 1. At first assume that the function f is concentrated on some circle $B(0; R) \subset C$. In this case, from the equality

$$\left(Bf\right)\left(z\right)=-\frac{1}{\pi}\underset{\varepsilon\rightarrow0}{\lim}\int_{\left\{ w\in B\left(0;R\right)\,:\,\left|z-w\right|>\varepsilon\right\} }\frac{f\left(w\right)}{\left(z-w\right)^{2}}dm\left(w\right)=$$

$$= -\frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\{w \in B(0;R) : |z-w| > \varepsilon\}} \frac{f(w)}{(z-w)^2} dm(w) + \frac{1}{\pi} \int_{B(0;R)} \frac{f(w)}{(z-z_0)^2} dm(w) =$$

$$= \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\{w \in B(0;R) : |z-w| > \varepsilon\}} (z_0 - w) \times$$

$$\times \left[\frac{1}{(z-w)^2 (z-z_0)} + \frac{1}{(z-w) (z-z_0)^2} \right] f(w) dm(w), z \neq z_0,$$

where $z_0 \in C$, we get that

$$|(Bf)(z)| \le \frac{16}{\pi |z|^3} \int_{B(0;R)} |z_0 - w| |f(w)| dm(w) = \frac{k_0}{|z|^3},$$

for values of $|z| > R_0$, where

$$k_0 = \frac{16}{\pi} \int_{B(0;R)} |z_0 - w| |f(w)| dm(w), R_0 = 2 \max\{R, |z_0|\}.$$

Then it follows that

$$m\{z \in C : |(Bf)(z)| > \lambda\} \le m\{z \in C : |z| \le R_0\} + m\left\{z \in C : \frac{k_0}{|z|^3} > \lambda\right\} =$$

$$= m\{z \in C : |z| \le R_0\} + m\left\{z \in C : |z| < \sqrt[3]{\frac{k_0}{\lambda}}\right\} = \pi R_0^2 + \pi \left(\frac{k_0}{\lambda}\right)^{2/3},$$

whence it follows asymptotic equality (9).

Now let's consider the general case. From the condition $\int_C f(z) \, dm(z) = 0$ it follows that for any $\varepsilon > 0$ there exist the functions f_1 and f_2 satisfying the condition: $f = f_1 + f_2$, the function f_1 is concentrated on some circle $B(0; R) \subset C$ and $\int_C f_1(z) \, dm(z) = 0$, the function f_2 satisfies the inequality $||f_2||_{L_1} < \frac{\varepsilon}{4C_1}$, where C_1 is a constant in estimation (1). Since the function f_1 is concentrated on the circle $B(0; R) \subset C$ and $\int_C f_1(z) \, dm(z) = 0$, then for the function f_1 equality (9) is satisfied, and therefore there exists $\lambda(\varepsilon) > 0$ such that for $0 < \lambda < \lambda(\varepsilon)$ the inequality

$$\lambda m \left\{ z \in C : |(Bf_1)(z)| > \frac{\lambda}{2} \right\} < \frac{\varepsilon}{2}$$
 (10)

holds. On the other hand, from the inequality (1) it follows that

$$\lambda m \left\{ z \in C : |(Bf_2)(z)| > \frac{\lambda}{2} \right\} \le 2C_1 \|f_2\|_{L_2} < \frac{\varepsilon}{2}$$
 (11)

for any $\lambda > 0$. From inequalities (10), (11) and the inclusion

$$\{z \in C: |(Bf)(z)| > \lambda\} \subset \left\{z \in C: |(Bf_1)(z)| > \frac{\lambda}{2}\right\} \bigcup \left\{z \in C: |(Bf_2)(z)| > \frac{\lambda}{2}\right\}$$

we get

$$\lambda m \{z \in C : |(Bf)(z)| > \lambda\} < \varepsilon$$

for $0 < \lambda < \lambda(\varepsilon)$. This shows that equality (9) was satisfied for all functions $f \in L_1(C)$, satisfying the condition $\int_C f(z) dm(z) = 0$. This completes the Proof of the Lemma 1

Proof of Theorem 2. In the case $\int_C f(z) dm(z) = 0$ the assertion of the Theorem follows from Lemma 1. Let's consider the case $\int_C f(z) dm(z) = \eta \neq 0$. Denote by $f_1(z) = \frac{\eta}{\pi} \chi(B(0; 1))(z)$, where $\chi(B(0; 1))$ is a characteristic function on the unit circle B(0; 1) and $f_2(z) = f(z) - f_1(z)$. Then $\int_C f_2(z) dm(z) = 0$, and from Lemma 1

$$m\left\{z \in C: |(Bf_2)(z)| > \lambda\right\} = o\left(\frac{1}{\lambda}\right), \lambda \to 0 + . \tag{12}$$

Since for any |z| > 2

$$|(Bf_{1})(z)| = \frac{|\eta|}{\pi^{2}} \left| \int_{B(0;1)} \frac{dm(w)}{(z-w)^{2}} \right| \leq \frac{|\eta|}{\pi} \cdot \frac{1}{(|z|-1)^{2}},$$

$$|(Bf_{1})(z)| = \frac{|\eta|}{\pi^{2}} \left| \int_{B(0;1)} \frac{dm(w)}{(z-w)^{2}} \right| = \frac{|\eta|}{\pi^{2}} \left| \int_{B(0;1)} \frac{dm(w)}{(|z|-w)^{2}} \right| \geq$$

$$\geq \frac{|\eta|}{\pi^{2}} Re \left(\int_{B(0;1)} \frac{dm(w)}{(|z|-w)^{2}} \right) \geq \frac{|\eta|}{\pi} \cdot \frac{(|z|-1)^{2}}{(|z|+1)^{4}},$$

then for any $0 < \lambda < \frac{|\eta|}{49\pi}$

$$m \{z \in C : |(Bf_1)(z)| > \lambda\} \le m \{z \in C : |z| \le 2\} + m \left\{z \in C : \frac{|\eta|}{\pi} \cdot \frac{1}{(|z|-1)^2} > \lambda\right\} =$$

$$= 4\pi + m \left\{z \in C : |z| < 1 + \sqrt{\frac{|\eta|}{\pi\lambda}}\right\} = 4\pi + \pi \left(1 + \sqrt{\frac{|\eta|}{\pi\lambda}}\right)^2, \qquad (13)$$

$$m \{z \in C : |(Bf_1)(z)| > \lambda\} \ge m \left\{|z| \ge 2 : \frac{|\eta|}{\pi} \cdot \frac{(|z|-1)^2}{(|z|+1)^4} > \lambda\right\} =$$

$$= m \left\{|z| \ge 2 : \frac{(|z|+1)^2}{|z|-1} < \sqrt{\frac{|\eta|}{\pi\lambda}}\right\} = m \left\{|z| \ge 2 : |z| + 3 + \frac{4}{|z|-1} < \sqrt{\frac{|\eta|}{\pi\lambda}}\right\} \ge$$

$$\ge m \left\{|z| \ge 2 : |z| + 7 < \sqrt{\frac{|\eta|}{\pi\lambda}}\right\} \ge \pi \left(\sqrt{\frac{|\eta|}{\pi\lambda}} - 7\right)^2 - 4\pi. \qquad (14)$$

It follows from (13) and (14) that

$$\lim_{\lambda \to 0+} \lambda m \left\{ z \in C : |(Bf_1)(z)| > \lambda \right\} = |\eta|. \tag{15}$$

For any $0 < \varepsilon < 1$, by the inclusions

$$\{z \in C: |(Bf_1)(z)| > (1+\varepsilon)\lambda\} \setminus \{z \in C: |(Bf_2)(z)| > \varepsilon\lambda\} \subset \{z \in C: |(Bf)(z)| > \lambda\} \subset \{z \in C: |(Bf_2)(z)| > \varepsilon\lambda\} \bigcup \{z \in C: |(Bf_1)(z)| > (1-\varepsilon)\lambda\}$$

and equalities (12), (15) we have

$$\frac{|\eta|}{1+\varepsilon} \leq \liminf_{\lambda \to 0+} \lambda \cdot m \left\{ z \in C : \ \left| (Bf) \left(z \right) \right| > \lambda \right\} \leq$$

$$\leq \limsup_{\lambda \to 0+} \lambda \cdot m \left\{ z \in C : \ \left| \left(Bf \right) (z) \right| > \lambda \right\} \leq \frac{|\eta|}{1-\varepsilon}.$$

This implies the equation (8) and completes the proof of the Theorem 2. \triangleleft

References

- [1] L.V. Ahlfors, *Lectures on Quasiconformal Mappings*, 2nd ed., University Lecture Series, v. 38. AMS, Providence, RI; 2006.
- [2] R.A. Aliev, Kh.I. Nebiyeva, *The A-integral and restricted Ahlfors-Beurling transform*, Integral Transforms and Special Functions, **29(10)**, 2018, 820-830.
- [3] K. Astala, T. Iwaniec, G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton: University Press; 2009.
- [4] R. Banuelos, P. Janakiraman, Sobolev regularity of the Beurling transform on planar domains, Trans Amer Math Sos. **360(7)**, 2008, 3603-3612.
- [5] V. Cruz, X. Tolsa, Smoothness of the Beurling transform in Lipschitz domains, J Func Anal., 262, 2012, 4423-4457.
- [6] V. Cruz, J. Mateu, J. Orobitg, Beltrami equation with coefficient in Sobolev and Besov spaces, Canadian J Math., 65, 2013, 1217-1235.
- [7] O. Dragicevic, Weighted estimates for powers of the Ahlfors-Beurling operators, Proc Amer Math Sos., 139, 2011, 2113-2120.
- [8] E. Doubtsov, A.V. Vasin, Restricted Beurling transforms on Campanato spaces, Complex Variables and Elliptic Eq., 62(3), 2017, 333-346.
- [9] T. Iwaniec, The best constant in a BMO-inequality for the Beurling-Ahlfors transform, Michigan Math. J., **34**, 1987, 407-434.
- [10] H. Kwok-Pun, The Ahlfors–Beurling transform on Morrey spaces with variable exponents, Integral Transforms and Special Functions, 29(3), 2018, 207-220.

- [11] J. Mateu, J. Orobitg, J. Verdera, Extra cancellation of even Calderon-Zygmund operators and quasiconformal mappings, J Math Pures et Appl., 91(4), 2009, 402-431.
- [12] M. Prats, L^p -bounds for the Beurling-Ahlfors transform, Publicacions Mat., **61(2)**, 2017, 291-336.
- [13] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton: University Press; 1970.
- [14] X. Tolsa, Regularity of C¹ and Lipschitz domains in terms of the Beurling transform, J Math. Pures et Appl., 100(2), 2013, 137-165.
- [15] A. Tumanov, Commutators of singular integrals, the Bergman projection, and boundary regularity of elliptic equations in the plane, Math. Research Letters, 23(4), 2016, 1221-1246.
- [16] A.V. Vasin, Regularity of the Beurling Transform in Smooth Domains, J Math. Sciences, 215(5), 2016, 577-584.
- [17] I.N. Vekua, Generalized analytic functions, Pergamon Press; 1962.

Khanim I. Nebiyeva Khazar University, Baku, AZ 1096, Azerbaijan E-mail: xanim.nebiyeva@gmail.com

Received 22 September 2019

Received 22 September 2019 Accepted 24 October 2019