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The Resolvent of the Discrete Dirac Operator

R.I. Aleskerov

Abstract. The discrete Dirac operator is considered whose coefficients tend to different limits on
±∞. An explicit form of the resolvent of this operator is found.
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1. Introduction and main result

We consider the system of difference equations{
a1,ny2,n+1 + a2,ny2,n = λy1,n,
a1,n−1y1,n−1 + a2,ny1,n = λy2,n, n = 0,±1,±2, ...,

(1)

where aj,n, , j = 1, 2, are real coefficients and satisfy the conditions

(−1)j−1 aj,n > 0, n = 0,±1,±2, ..., aj,n → 0, n→ +∞, j = 1, 2, (2)∑
n<0

|n|
∣∣∣(−1)j−1 aj,n − 1

∣∣∣ <∞, j = 1, 2. (3)

Note that the system of difference equations (1) is a discrete analogue of the one-dimensional
Dirac system. In this regard, the operator will be called the discrete Dirac operator. Var-
ious questions of the spectral theory of the Dirac operator were studied in [1, 2, 3]. We
note that the direct and inverse problems of spectral analysis for the system (1) in various
statements and in different classes were considered in [4, 5, 6, 7, 8, 9].

Let `2 ((−∞,∞) , C) denote the Hilbert space of all complex vector sequences y =(
y1,n
y2,n

)∞
n=−∞

with the norm ‖y‖ =
∑∞

n=−∞

{
|y1,n|2 + |y2,n|2

}
. We also define the op-

erator L generated in `2 ((−∞,∞) , C) by (1). By virtue of (2), (3), the operator L is
bounded and self-adjoint.

It is known that in studying various problems of the spectral theory of linear operators,
of particular interest are formulas for the expansion in eigenfunctions. In the present
paper, an explicit form of the operator L resolvent is found. Similar questions for the
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one-dimensional Dirac system, the Schrödinger equation, and its difference analogue were
investigated in the works [2, 5, 6, 7, 8, 9].

We denote the operator defined in `2 ([0,∞) , C) by system of equations (1) for n ≥ 0
and the boundary condition y1,0 = 0 by L0. It follows from the condition (2) that L0 is a
completely continuous self-adjoint operator. Since the eigenvalues of the operator L0 are
simple and L0 is completely continuous, its spectrum consists of simple eigenvaluesλn =
±µn, n = 1, 2, ..., where λn → 0 as n → ∞, and the point λ = 0. The latter is either
a simple eigenvalue of the operator L0 or the only point of its continuous spectrum.
It is known (see, for example, [10], Ch. 7, § 4) that the eigenvectors of a completely
continuous self-adjoint operator form an orthogonal basis in the corresponding space.
Consequently, the spectral function of the operatorL0, which we denote byρ (λ), is a step
function concentrated at the points λn, n = 1, 2, .... For the sake of simplicity, in what
follows we assume that the spectrum of the operator L0 lies in the interval (− 2, 2).
Denote by Pj,n (λ), Qj,n (λ) the solutions of the system of equations (1), defined by the
initial conditions P1,0 (λ) = Q2,1 (λ) = 0, P2,1 (λ) = 1, Q1,1 (λ) = a−12,1.

Consider the spectral function

ρ (λ) =
∑
λn<λ

α−1n ,

where

αn =
∞∑
k=1

{
P 2
1,k (λn) + P 2

2,k (λn)
}
,
∞∑
n=1

α−1n = 1.

Following [9], we introduce the Weyl function m (λ) = 〈Rλδ, δ〉 of the operator L0, where

Rλ is the resolvent of the operator L0 and δ =

(
0, 0, 0, ...
1, 0, 0, ..

)
∈ `2 ([0,∞) , C).

The Weyl function is related to the spectral function (see [11, 12]) by the equality

m (λ) =

∫ ∞
−∞

dρ (t)

t− λ
,

which implies that

m (λ) =
∞∑
n=1

1

αn (λn − λ)
. (4)

We also introduce the Weyl solution

f+j,n (λ) = Qj,n (λ) +m (λ)Pj,n (λ) (5)

of the system of equations (1). By (4), the Weyl solution is analytic on the whole complex
λ-plane except for the simple polesλk, k = 1, 2, .... (The point λ = 0 is a nonisolated
singularity of the Weyl solution). In addition, it is known (see, for instance, [11, 12]) that
for n > 0 the equality f+j,n (λ) = (Rλδ)n is valid. Consequently, for every N > −∞ the
Weyl solution belongs to `2 ([N,∞) , C) with respect to the variable n.
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We denote by Γ the complex λ−plane with a cut along the segment [−2, 2]. In the
plane we consider the function

z = z (λ) = −λ
2 − 2

2
+
λ

2

√
λ2 − 4,

choosing a regular branch of the radical such that
√
λ2 − 4 > 0 with λ > 2. It is known

that the system of equation (1) has solution
{
f−j,n (λ)

}
, j = 1, 2, representable in the form

[9]

f−j,n (λ) = α−j (n)

(
z−1 − 1

λ

)2−j
z−n

1 +
∑
m≤1

K−j (n,m) z−m

 , n = 0,±1,±2, ...,


(6)

and the quantities α±1 (n) , α±2 (n) , K±1 (n,m) , K±2 (n,m) satisfy the relations

α−j (n) = 1 + o (1) , n→ −∞, j = 1, 2,

K−j (n,m) = O
(
σ−
(
n+

[
m
2

]
+ 1
))
, n+m→ −∞

}
(7)

where σ− (n) =
∑

m≤n { |a1,m − 1|+ |a2,m + 1|} , by [x] denote the integer part x . Ac-

cording to (6), (7) for each functions
{
f−j,n (λ)

}
, j = 1, 2, are regular in the plane Γ and

continuous up to its boundary ∂Γ.

Let uj,n and vj,n be two solutions of the system of equations (1). We call them the

Wronskian quantity {uj,n, vj,n} = a1,n−1 (u1,n−1v2,n − u2,nv1,n−1) . Put w (λ) =
{
f+j,n (λ) ,

f−j,n (λ)
}

. Let us state the main result of this paper.

Theorem 1. The functions

Rnm (λ) =

(
R11
nm R12

nm

R21
nm R22

nm

)
, Rijnm = −w−1 (λ)

{
f+i,n (λ) f−j,m (λ) ,m ≤ n,
f+j,m (λ) f−i,n (λ) ,m > n,

(8)

are elements of the operator L resolvent matrix and satisfy the equations

a1,nR
22
n+1,m + a2,nR

22
nm − λR12

nm = 0,

a1,nR
21
n+1,m + a2,nR

21
nm − λR11

nm = δnm,

a1,n−1R
11
n−1,m + a2,nR

11
nm − λR21

nm = 0,

a1,n−1R
12
n−1,m + a2,nR

12
nm − λR22

nm = δnm,

(9)

where δnm is the Kronecker symbol.

Proof. Let h = {h1,n, h2,n} ∈ `2 ((−∞,∞) ;C) be an arbitrary finite sequence. In
order to construct the resolvent of the operator L, we need to solve the equation

Ly = λy + h.
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We rewrite the last equation in the form{
a1,ny2,n+1 + a2,ny2,n = λy1,n + h1,n,
a1,n−1y1,n−1 + a2,ny1,n = λy2,n + h2,n.

(10)

We are looking for a solution to the system of equations in the form

yj,n = Cnf
+
j,n (λ) +Dnf

−
j,n (λ) j = 1, 2, (11)

where Cn and Dn are the quantities to be determined. Substituting representation (11)
into the system of equations (10) after simple transformations, we obtain{

a1,n−1 (Cn−1 − Cn) f+1,n−1 (λ) + a1,n−1 (Dn−1 −Dn) f−1,n−1 (λ) = h2,n,

a1,n−1 (Cn−1 − Cn) f+2,n (λ) + a1,n−1 (Dn−1 −Dn) f−2,n (λ) = −h1,n−1.

Solving the last system of equations with respect to Cn−1 − Cn and Dn−1 −Dn, we find
that

Cn−1 − Cn = w−1 (λ)
[
f−1,n−1 (λ)h1,n−1 + f−2,n (λ)h2,n

]
, (12)

Dn−1 −Dn = w−1 (λ)
[
f+1,n−1 (λ)h1,n−1 + f+2,n (λ)h2,n

]
. (13)

Note that to fulfil the conditions y ∈ `2 ((−∞,∞) ;C) you need to take C−∞ = 0, D∞ = 0.
Adding then equalities (12) for n = n, n − 1, n − 2, ..., and equalities (13) for n = n +
1, , n+ 2, n+ 3, ..., we have

Cn = −w−1 (λ)
∑n−1

k=−∞

[
f−1,k (λ)h1,k + f−2,k+1 (λ)h2,k+1

]
,

Dn = −w−1 (λ)
∑∞

k=n

[
f+1,k (λ)h1,k + f+2,k+1 (λ)h2,k+1

]
.

Substituting the last equalities into representation (11), we obtain

yj,n = −w−1 (λ)
[∑n−1

k=−∞ f
+
j,n (λ) f−1,k (λ)h1,k +

∑∞
k=n f

−
j,n (λ) f+1,k (λ)h1,k

]
−

−w−1 (λ)
[∑n−1

k=−∞ f
+
j,n (λ) f−2,k (λ)h2,k +

∑∞
k=n f

−
j,n (λ) f+2,k (λ)h2,k

]
.

On the other hand, by the definition of the resolvent, we have

yj,n =

∞∑
k=−∞

[
Rj1nkh1,k +Rj2nkh2,k

]
. (14)

Comparison of the last equalities leads us to formulas (8). Using (8), it is directly verified
that equations (9) are valid, and it follows from (9) that the vector y = {y1,n, y2,n}∞−∞,
defined by formula (14) is a solution to the system of equations (10). Thus, the theorem
is proved. J
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