One Remark on the Eigenvalues of the Schrodinger Operator with Growing Potential

N.G. Mamedova, A.Kh. Khanmamedov

Abstract

The Schrodinger operator $L=-\frac{d^{2}}{d x^{2}}+|x|$ on the whole axis is considered. The spectrum of the operator is investigated. An asymptotic formula for eigenvalues is obtained.

Key Words and Phrases: Schrodinger operator, Airy equation, Airy functions, eigenvalues.
2010 Mathematics Subject Classifications: 34A55

1. Introduction and main result

The spectral properties of the Airy operator $L_{D} y=-y^{\prime \prime}+x y, y(0)=0$ or $L_{N} y=-y^{\prime \prime}+$ $x y, y^{\prime}(0)=0$ were studied in the works of quite a few authors (see $[1,2,3,4,5,6,7,8,9]$ also the literature there). The interest is also the corresponding Schrodinger operator on the whole axis.

In the space $L_{2}(-\infty, \infty)$ we consider the operator L, generated by the differential expression

$$
l(y)=-y^{\prime \prime}+|x| y
$$

with the domain

$$
D(L)=\left\{y \in L_{2}(-\infty, \infty): y \in W_{2, l o c}^{2}, l(y) \in L_{2}(-\infty, \infty)\right\} .
$$

Note that the operator L is densely defined, because its domain contains infinitely differentiable functions compactly supported on $(-\infty, \infty)$, the set of these functions is well known to be dense in $L_{2}(-\infty, \infty)$, since its domain of definition contains infinitely differentiable functions with compact support on the interval, the set of which is dense in. Moreover, L is a self-adjoint operator. Obviously, the spectrum of the operator is discrete and consists of eigenvalues $\lambda_{n}, n=1,2, \ldots$, where $\lambda_{n} \rightarrow \infty$ for $n \rightarrow \infty$.

We will be interested the asymptotic behavior of eigenvalues λ_{n}.
First, consider the equation

$$
\begin{equation*}
-y^{\prime \prime}+x y=\lambda y,-\infty<x<\infty, \quad \lambda \in C . \tag{1}
\end{equation*}
$$

It is well known [10] that this equation has two linearly independent solutions in the form $A i(x-\lambda), B i(x-\lambda)$, where $A i(z), B i(z)$ are the Airy functions of the first and second kind, respectively.

We note some properties of these functions. As is known (see [8, 10]), both functions are entire functions of order $3 / 2$ and type $2 / 3$. The function $A i(z)$ admits the following asymptotic representations as $|z| \rightarrow \infty$

$$
\begin{gathered}
\mathrm{A} i(z) \sim \pi^{-\frac{1}{2}} z^{-\frac{1}{4}} e^{-\zeta}\left[1+O\left(\zeta^{-1}\right)\right],|\arg z|<\pi, \\
A i^{\prime}(z) \sim-\pi^{-\frac{1}{2}} z^{\frac{1}{4}} e^{-\zeta}\left[1+O\left(\zeta^{-1}\right)\right],|\arg z|<\pi, \\
\mathrm{A} i(-z) \sim \pi^{-\frac{1}{2}} z^{-\frac{1}{4}} \sin \left(\zeta+\frac{\pi}{4}\right)\left[1+O\left(\zeta^{-1}\right)\right],|\arg z|<\frac{2 \pi}{3}, \\
A i^{\prime}(-z) \sim-\pi^{-\frac{1}{2}} z^{\frac{1}{4}} \cos \left(\zeta+\frac{\pi}{4}\right)\left[1+O\left(\zeta^{-1}\right)\right],|\arg z|<\frac{2 \pi}{3},
\end{gathered}
$$

where $\zeta=\frac{2}{3} z^{\frac{3}{2}}$. In the sector $|z|<\frac{\pi}{3}$ the function $B i(z)$ has an asymptotic representation

$$
B i(z) \sim \pi^{-\frac{1}{2}} z^{-\frac{1}{4}} e^{\zeta}\left[1+O\left(\zeta^{-1}\right)\right]
$$

Thus, the functions $B i(z)$ grow exponentially as $|z| \rightarrow \infty$ along any ray in this sector. For the Wronskian of functions $A i(z), B i(z)$ the equality

$$
\begin{equation*}
\{A i(z), B i(z)\}=A i(z) B i^{\prime}(z)-A i^{\prime}(z) B i(z)=\pi^{-1} \tag{2}
\end{equation*}
$$

is valid.
We now consider the equation

$$
\begin{equation*}
-y^{\prime \prime}+|x| y=\lambda y, \quad-\infty<x<\infty, \quad \lambda \in C \tag{3}
\end{equation*}
$$

According to the general theory (see [11]), equation (3) has two linearly independent solutions $\psi_{ \pm}(x, \lambda)$, which for each $\lambda, \operatorname{Im} \lambda>0$ satisfy the conditions $\psi_{ \pm}(x, \lambda) \in L_{2}(0, \pm \infty)$. Since equation (3) does not change when x replaced by $-x$, the function $\psi_{ \pm}(-x, \lambda)$ is also its solution. Therefore, we can assume that $\psi_{-}(x, \lambda)=\psi_{+}(-x, \lambda)$.

On the other hand, since $A i(x-\lambda) \in L_{2}(0, \infty)$, the functions $\psi_{+}(x, \lambda), A i(x-\lambda)$ coincide up to a factor. Based on these considerations, for $x \geq 0$ we set $\psi_{+}(x, \lambda)=$ Ai $(x-\lambda)$. Further, when $x \leq 0$ looking at the solution $\psi_{+}(x, \lambda)$ in the form

$$
\psi_{+}(x, \lambda)=\alpha A i(-x-\lambda)+\beta B i(-x-\lambda),
$$

since the functions $A i(-x-\lambda), B i(-x-\lambda)$ form the fundamental system of solutions of equation (1) for $x \leq 0$. Taking into account that the solution $\psi_{+}(x, \lambda)$ and its derivative $\psi_{+}^{\prime}(x, \lambda)$ are continuous at a point $x=0$, to determine the coefficients α, β we obtain the following system of equations

$$
\left\{\begin{array}{c}
A i(-\lambda) \alpha+B i(-\lambda) \beta=A i(-\lambda) \\
A i^{\prime}(-\lambda) \alpha+B i^{\prime}(-\lambda) \beta=-A i^{\prime}(-\lambda)
\end{array}\right.
$$

Solving the last system with respect to the coefficients α, β and taking into account equality (2), we obtain

$$
\begin{aligned}
& \alpha=-\pi(A i(-\lambda) B i(-\lambda))^{\prime}, \\
& \beta=-2 \pi A i(-\lambda) A i^{\prime}(-\lambda) .
\end{aligned}
$$

So, we have proved the following theorem.
Theorem 1. Equation (3) has special solutions $\psi_{ \pm}(x, \lambda)$, which can be represented in the form

$$
\begin{aligned}
& \psi_{+}(x, \lambda)=\left\{\begin{array}{c}
A i(x-\lambda), x \geq 0, \\
-\pi(A i(-\lambda) B i(-\lambda))^{\prime} A i(-x-\lambda)-2 \pi A i(-\lambda) A i^{\prime}(-\lambda) B i(-x-\lambda), x<0
\end{array}\right. \\
& \psi_{-}(x, \lambda)=\left\{\begin{array}{c}
-\pi(A i(-\lambda) B i(-\lambda))^{\prime} A i(x-\lambda)-2 \pi A i(-\lambda) A i^{\prime}(-\lambda) B i(x-\lambda), x \geq 0, \\
A i(-x-\lambda), x<0
\end{array}\right.
\end{aligned}
$$

We return now to the study of the spectrum of the operator L. From the fact that $\psi_{ \pm}(x, \lambda) \in L_{2}(0, \pm \infty)$, if $\lambda=\lambda_{n}$ is an eigenvalue, then the solutions $\psi_{+}\left(x, \lambda_{n}\right)$ and $\psi_{-}\left(x, \lambda_{n}\right)$ are linearly dependent. In fact, since

$$
\begin{aligned}
& \psi_{+}\left(x, \lambda_{n}\right)=\left\{\begin{array}{c}
A i\left(x-\lambda_{n}\right), x \geq 0, \\
(-1)^{n-1} A i\left(-x-\lambda_{n}\right), x<0,
\end{array}\right. \\
& \psi_{-}\left(x, \lambda_{n}\right)=\left\{\begin{array}{c}
(-1)^{n-1} A i\left(x-\lambda_{n}\right), x \geq 0, \\
A i\left(-x-\lambda_{n}\right), x<0,
\end{array}\right.
\end{aligned}
$$

then following equality holds

$$
\psi_{+}\left(x, \lambda_{n}\right)=(-1)^{n-1} \psi_{-}\left(x, \lambda_{n}\right)
$$

From these arguments it follows that the eigenvalues of the operator coincide with the zeros of the function

$$
\Delta(\lambda)=\left\{\psi_{+}(x, \lambda), \psi_{-}(x, \lambda)\right\} .
$$

Taking advantage of the fact that the Wronskian of the two solutions does not depend on x, we obtain

$$
\begin{equation*}
\Delta(\lambda)=\left.\left\{\psi_{+}(x, \lambda), \psi_{-}(x, \lambda)\right\}\right|_{x=0}=-2 A i(-\lambda) A i^{\prime}(-\lambda) \tag{4}
\end{equation*}
$$

From the last formula and the known properties of the zeros of functions $A i(\lambda), A i^{\prime}(\lambda)$ (see [10]) it follows that the eigenvalues $\lambda_{n}, n=1,2, \ldots$ of the operator L are located only on the positive semi-axis and holds the following asymptotic equality

$$
\lambda_{n}=\left(\frac{3 \pi(2 n-1)}{8}\right)^{\frac{2}{3}}\left(1+O\left(n^{-2}\right)\right), n \rightarrow \infty .
$$

Let us prove that the eigenvalues of the operator L are simple. We introduce normalization numbers $\alpha_{n}, n=1,2, \ldots$, setting

$$
\begin{equation*}
\alpha_{n}=\sqrt{\int_{-\infty}^{\infty}\left|\psi_{ \pm}\left(x, \lambda_{n}\right)\right|^{2} d x} \tag{5}
\end{equation*}
$$

Let us agree with dots to denote differentiation with respect to λ, and strokes with respect to x :

$$
u^{\prime}=\frac{\partial}{\partial x} u, \dot{u}=\frac{\partial}{\partial \lambda} u
$$

Since $\psi_{ \pm}(x, \lambda)$ decreases exponentially for $x \rightarrow \pm \infty$, from the standard (see, e.g., [12]) identity

$$
f^{2}=\{\dot{f}, f\}^{\prime}
$$

and (5) it follows that

$$
\begin{aligned}
& \left(\alpha_{n}\right)^{2}=\int_{-\infty}^{\infty} \psi_{+}^{2}\left(x, \lambda_{n}\right) d x=\int_{0}^{\infty} \psi_{+}^{2}\left(x, \lambda_{n}\right) d x+\int_{-\infty}^{0} \psi_{-}^{2}\left(x, \lambda_{n}\right) d x= \\
& =\left.\left\{\dot{\psi}_{+}\left(x, \lambda_{n}\right), \psi_{+}\left(x, \lambda_{n}\right)\right\}\right|_{0} ^{\infty}+\left.\left\{\dot{\psi}_{-}\left(x, \lambda_{n}\right), \psi_{-}\left(x, \lambda_{n}\right)\right\}\right|_{-\infty} ^{0}= \\
& =-\left.\left\{\dot{\psi}_{+}\left(x, \lambda_{n}\right), \psi_{+}\left(x, \lambda_{n}\right)\right\}\right|_{x=0}+\left.\left\{\dot{\psi}_{-}\left(x, \lambda_{n}\right), \psi_{-}\left(x, \lambda_{n}\right)\right\}\right|_{x=0}= \\
& =-\left.(-1)^{n-1}\left\{\dot{\psi}_{+}\left(x, \lambda_{n}\right), \psi_{-}\left(x, \lambda_{n}\right)\right\}\right|_{x=0}- \\
& \left.(-1)^{n-1}\left\{\psi_{+}\left(x, \lambda_{n}\right), \dot{\psi}_{-}\left(x, \lambda_{n}\right)\right\}\right|_{x=0}=-(-1)^{n-1} \dot{\Delta}\left(\lambda_{n}\right) .
\end{aligned}
$$

Therefore, $\dot{\Delta}\left(\lambda_{n}\right) \neq 0$, i.e. the eigenvalues of the operator L are simple.
Thus, the following theorem holds.
Theorem 2. The spectrum of the operator L consists of a sequence of simple real eigenvalues $\lambda_{n}, n \geq 1$, located on the positive semi-axis and

$$
\lambda_{n}=\left(\frac{3 \pi(2 n-1)}{8}\right)^{\frac{2}{3}}\left(1+O\left(n^{-2}\right)\right), n \rightarrow \infty .
$$

Remark 1. In the space $L_{2}(0, \infty)$ we consider the operators $L_{D} y=-y^{\prime \prime}+|x| y, y(0)=0$ and $L_{N} y=-y^{\prime \prime}+|x| y, y^{\prime}(0)=0$. Formula (4) shows that the spectrum of the operator consists of the union of the spectra of the operators L_{D} and L_{N}.

References

[1] J. Avron, I. Herbst, Spectral and scattering theory of Schrodinger operators related to the Stark effect, Commun. Math. Phys., 52, 1977, 239-254.
[2] Y. Lin, M. Qian, Q. Zhang, Inverse scattering problem for one-dimensional Schordinger operators related to the general Stark effect, Acta Mathematicae Applicatae Sinica, 5, 1989, 116-136.
[3] Li. Yishen, One special inverse problem of the second order differential equation on the whole real axis, Chin. Ann. of Math., 2, 1981, 147-155.
[4] A.P. Kachalov, Ya.V. Kurylev, The method of transformation operators in the inverse scattering problem. The one-dimensional Stark effect, J. Soviet Mathematics, 5, 1991, 3111-3122.
[5] H.H. Murtazin, T.G. Amangildin, The asymptotic expansion of the spectrum of a Sturm-Liouville operator, Math. USSR Sbornik, 38(1), 1981, 135-149.
[6] A. Jensen, Perturbation results for Stark effect resonances, J. Reine Angew. Math., 394, 1989, 168-179.
[7] E.L. Korotyaev, Resonances for 1D Stark operators, Journal Spectral Theory, 7, 2017, 633-658.
[8] A.M. Savchuk, A.A. Shkalikov, Spectral Properties of the Complex Airy Operator on the Half-Line, Functional Analysis and Its Applications, 51, 2017, 66-79.
[9] I.M. Huseynov, A.Kh. Khanmamedov, On the inverse scattering problem for the onedimensional Schrodinger equation with increasing potential, Ukrainian Mathematical Journal, 70, 2019, 1390-1402.
[10] M. Abramowitz, I. Stegun, Handbook of mathematical functions, National Bureau of Standards Applied Mathematics Series, 55, Issued June, 1964.
[11] E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Part 1, Publisher: Oxford University Press, Year: 1962
[12] V.A. Marchenko, Sturm-Liouville Operators and Applications, Basel, Birkheauser, 1986.

Natavan G. Mamedova
Ganja State University, Ganja, Azerbaijan
Email: agil_khan@mail.ru
Agil Kh. Khanmamedov
Baku State University, Baku, Azerbaijan
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
Email: agil_khan@mail.ru
Received: 23 September 2019
Accepted: 30 October 2019

