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A Variational View on Dupuit’s formula

N. Mammadzade

Abstract. In this paper, Dupuit’s formula on discharge from the well is studied in dependence of
bottom hole zone and layer geometries. The term ”conductivity” has been used to propose a new
result in this regard. The obtained result useful for deriving of new Dupuit’s formulas suitable to
a concrete bottom-hole zone and layer constructions. It happens thanking a variational nature of
conductivity of layer. Also same approach is considered for porous medium obeying Forthamel’s
low.
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1. Introduction

The Dupuit formula relating to a debit and a depression in the oil wells is well-
known (see e.g. [1, p. 61] or [4, p.40]) . Let ∆p = Pk − Pc be a debit,- it is difference of
pressures on the bottom hole zone and in the end of layer. Then the discharge Q from the
well over cylindrical well-bore of radius rc, height h is found as

Q =
2πkh∆p

µ ln Rk

rc

, (1)

where Rk is the limit radius of layer, k is its permeability, µ is viscosity of fluid (oil ).

There are a lot of versions of formula (1) relating to a single hole and multi-hole
cases, where different form bottom-hole zones is considered (see e.g. [2]). From those it
follows that the coefficient of proportionality of discharge Q on depression ∆p significantly
depends on geometry of layer both at infinity γ and in the inter-layer surfaces Γ. In the
paper, to characterize the impact of those geometries, we have employed the mathematical
term ”conductivity”. Using this term we derive a Dupuit formula, which characterizes the
coefficient of proportionality in the dependence of discharge via the depression, provided
arbitrary bottom-hole zone and layer to be considered. Though this formula contains the
abstract mathematical term conductivity, in general, it may be exactly calculated finding
a solution of variational problem (6) below. Solution of variational problem allows to find
the conductivity-P(G) in order to be inserted in to (7). For example, in case of formula
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Figure 1: A circular cylinder of radius rc height h.

(1) bottom-hole zone is a circular cylinder of height H radius rc and layer limits in the
infinity is a sphere of radius Rk (see, Figure 1)

It is a well known fact in potential theory of mathematics (see e.g. [5]) that the
Wiener’s capacity of a body coincides with capacity of its boundary surface. This property
can also be attributed to the conductivity too. Also it is known that the capacity of an
2-dimensional surface is positive. From the Dupuit’s type formula founded in the paper
it is seen that the discharge increases as the contact surface ∂W of layer Ω with bottom
hole zone W increase. This proves that the considered approach is true in the sense that,
the discharge Q remains constant if the volume of bottom-hole zone W decreases but the
capacity of its surface remains constant. In other words, it follows from formula (7) below
that by taking the volume of contact zone W as for as small, but the contact surface ∂W
sufficiently ”big” we will increase the productivity of well. This result proves the increase
of productivity of rocky and stony layers in the hydraulic fracture method exploitations.
Though the interior volume in the hydraulic fractures (that stands a bottom-hole zone of
well W ) is almost zero over interior of the fracture, the total conductivity of the contact
surface ∂W may be sufficiently larger (see, Figure 2)

This explains a reason of increase of productivity of rock and stone wells in exploitation
by hydraulic fracture technologies (see e.g. [6, 7]).

In this paper, we have considered also a case of porous medium layer. In this case too
a proper conductivity is introduced in order to characterize the productivity of wells. In
dependence of the geometry of bottom hole zone and layer a Dupuit formula for a porous
medium layer obeying Forchamel’s low of filtration has been produced.
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Figure 2: The hydraulic fractured well pipe.

2. A conductivity characterization of Dupuit’s formula for Darcy

flittering medium

Assume that the considered layer is restricted from upper and bottom by inter-
layer surfaces Γ. The fluid filtrating from the medium (layer) through Ω\ and obeying the
Darcy low arrives to the bottom-hole zone W ( see, Figure 3).

Figure 3: The multy-pipe bottom-hole well.

The filtration equation corresponding to this process in the steady stage is

div

(

k

µ
∇P

)

= 0, (x, y, z) ∈ Ω \W, (2)

where ∇ =
(

∂
∂x
, ∂
∂y
, ∂
∂z

)

, µ is viscosity of liquid, k -its permeability; for simplicity, having

considered homogeneous and incompressible fluid, we can assume these quantities as con-
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stant. Let the bottom-hole pressure be Pc on W , the pressure at the end of medium on γ
be Pk.

Denoting the discharge of well as Q we have Q =
∫∫

∂W

ρvnds, where ds is an element of

small area of surface ∂W,Q -amount of fluid outing from well at unit time (the productivity
of well), ρ is fluid density, vn = v ·n is the liquid velocity passing through the bottom-hole
zone, n-unit normal to ∂W ordered out the layer. By the Darcy low [3], v = − k

µ
grad p.

For ρ, k, µ to be constants we have

Q = −
ρk

µ

∫∫

∂W

∂p

∂n
ds, (3)

while the boundary conditions are

p|∂W = Pc, p|γ = Pk,
∂p

∂n

⌋

Γ

= 0;

Γ-the interlayer surface, γ is a limit surface of layer on infinity.

Introducing the auxiliary function P = Pk−p
Pk−Pc

, we have

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= 0. (4)

and the conditions

P|∂W = 1, P|∞ = 0,
∂P

∂n

⌋

Γ

= 0.

Now, multiply equation (4) by P and integrate over the domain G = Ω\W. Then since P
equals one on ∂W, it follows from Green’s formula that

∫∫

∂W

∂P

∂n
ds =

∫∫∫

Ω\W

|∇P|2dxdydz

Using (3) and the notation for P the left hand side equals µQ
ρk(Pk−Pc)

. Therefore,

µQ

ρk(Pk − Pc)
=

∫∫∫

Ω\W

|∇P|2 dxdydz (5)

It is proved in the potential theory in mathematics [5] that, the right hand side is
conductivity P(G) of domain G = Ω \W. Where also was proved that solutions of (4) are
minimizers of the functional

P(G) = inf

∫∫∫

G

|∇ψ|2 dxdydz , (6)
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over the class of functions ψ that are greater than one in W, and vanishes at the end of
medium (not the interlayer surface!). Observe, the inter-layer surfaces Γ are free from the
conditions for a minimizer ψ. From (5) we get P (Ω\W ) = µQ

ρk(Pk−Pc)
or

Q =
(Pk − Pc) ρk

µ
· P(G) (7)

The obtained formula (7) is one of the main results of the paper. In applications it can
be found (or estimated) as a solution of variation problem (6) by approximate or accurate
calculations for the minimizing functions ψ.

Example 1. Let the wellbore be a cylinder of radius rc, height H. It is not difficult
to show that P (Ω\W ) ≃ H

ln
Rk

rc

. Taking into account the last from (7) it follows

Q ≃
(Pk − Pc) ρkH

µ lnRk

rc

· (8)

This formula is known as Dupuit’s formula [4]. To prove it let us calculate the conductivity
P (Ω\W ) in formula (7). For that, we search for a minimum of variation problem (6) in
the class of functions F = fz (x, y) cosπz

l
, where fz (x, y) is a function of variables x, y

greater than one on lateral surface of cylinder and is zero on the infinity. Inserting the
function fz in (6), we get (8).

Exampe 2. Let well-head be a sphere of radius rc with center at zero and the medium
is a ball of radius Rk also with center in the origin. This means Ω = Q(0, Rk),W = Q(0, rc)
and G = Q(0, Rk) \ Q(rc). To calculate P(G) for this case in order to get the analog of
formulas (1) or (8). Take the function

ψ(r) =

(

1−
rc

Rk

)−1 (
rc

r
−

rc

Rk

)

, rc < r < Rk, r =
√

x2 + y2 + z2

and calculate integral (6) in the right hand side

P(G) =

∫∫∫

Q(0,Rk)\Q(0,rc)

|∇ψ|2dxdydz =

∫∫

r=rc

∂ψ

∂r
ds =

4πrcRk

Rk − rc

Inserting this into (7) we get the following Dupuit’s type formula

Q =
(Pk − Pc) ρk

µ
·
4πrcRk

Rk − rc
. (9)
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