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1. Introduction

An integral of a view ∫
Ω
G(x̄)e2πiF (x̄)dx̄ (1)

is called a multiple trigonometric integral; here Ω denotes some domain of n dimensional
space Rn, and on the functions G(x) and F (x) one imposes definite conditions on bound-
edness or smoothness. Many investigations (see [1, 2, 3, 4, 7, 8, 9, 10, 11, 18, 19]) were
devoted to estimations of trigonometric integrals. The first result in this direction belongs
to Van der Corput and E.Landau (see [11]). The result established in the work [4] where
the authors have received a non-improvable estimation for trigonometric integrals has im-
portant applications. The multidimensional case also was investigated in the literature.
Unlike one-dimensional case, estimating of multiple trigonometric integrals of a view (1)
in which Ω is some Jordan domain with a smooth boundary and the functions G(x),F (x)
are from a certain class of smoothness is much more difficult.

The scheme of finding of estimates for integrals of a view (1) is similar to the scheme
of one-dimensional case. After some transformations (see [11]) the integral reduces to the
view ∫ b

a
V (u)e2πiudu,

where V (u) represents the surface integral depending on parameter u.
Let Ω be a bounded closed domain of n-dimensional space Rn, n ≥ 2. Let’s assume

that in Ω an n− 1-dimensional surface be given by means of a polynomial equation

f(x̄) = 0 (2)
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with the gradient ∇f = (∂f/dx1, ..., ∂f/dxn) which has everywhere in Ω a non-vanishing
norm. In this article we consider surface trigonometric integrals taken over hypersurface
Π given by the polynomial equation (2):∫

Π
g(x̄)e2πiF (x̄)ds; (3)

here g(x̄) is some algebraic function. Such integrals arise after of transformations by using
Stokes type formulae. Trivial estimation of integral (3) can be obtained as follows∫

Π
g(x̄)e2πiF (x̄)ds ≤

∫
Π
|g(x̄)|ds.

Non-trivial estimation for the integrals of such type can be useful in applications to the
questions connected with the distribution of integral points in multidimensional domains.

2. Auxiliary statements

Let Ω be a bounded closed domain of n-dimensional space Rn, n > 1. Let’s assume that
in Ω some r-dimensional surface be given by means of a system of polynomial equations

fj(x̄) = 0, j = 1, ..., n− r, 0 ≤ r ≤ n, (4)

with a Jacoby matrix

J = J(x̄) = ‖∂fj
∂xi
‖, i = 1, ..., n, j = 1, ..., n− r

which has everywhere in Ω a maximal rank.
Let A0 = A0(x̄) be some functional matrix written down in a form

A0 = A0 = ‖fij(x̄)‖ , 1 ≤ i ≤ r, 1 ≤ j ≤ m, rm ≥ n

with smooth entries. Arranging the entries of columns of this matrix in a line as below

f11(x̄), ..., fr1(x̄), f12(x̄), ..., fr2(x̄), ..., f1m(x̄), ..., frm(x̄),

let’s take the transposed Jacoby matrix of this system of functions designating it as A1:

A1 = A1(x̄) =

∥∥∥∥∥∥∥
∂f11
∂x1

· · · ∂fr1
∂x1

· · · ∂f1m
∂x1

· · · ∂frm
∂x1

· · · · · · · · · · · · · · · · · · · · ·
∂f11
∂xn

· · · ∂fr1
∂xn

· · · ∂f1m
∂xn

· · · ∂frm
∂xn

∥∥∥∥∥∥∥ .
Then, entries of columns of this matrix, consequently as above, we arrange in a line,

and take the transposed Jacoby matrix A2 = A2(x̄) = A′1(x̄) of the received system of
functions. Let’s continue this procedure while we have not received a matrix Ak = A′k−1(x̄)
for a given k ≥ 1. The last matrix defined by such procedure consists of all possible
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partial derivatives of the same order k of entries of the matrix A0 = A0(x̄) and has the
size n × nk−1rm. Let’s assume that Aj(x̄) has in Ω a maximal rank equal to n. Let’s
designate by Gj(x̄) the product of the last (smallest) r singular numbers of the matrix
Aj(x̄), j = 0, ..., k. We put

E = E(H) = {x̄ ∈ Ω|G0(x̄) ≤ H} , H > 0.

If ϕik(x̄) are entries of the matrix Aj(x̄) we will accept the following designations

Lj(x̄) =

∑
i,k

|ϕik(x̄)|2
 ,

L = max
j

max
x̄∈Ω

Lj(x̄), Gj = min
x̄∈Ω

Gj(x̄), j = 0, ..., k.

The cases r = n−1 and r = n−2 we will consider separately. Assume that the domain
Ω can be dissected into such parts that on each of them the equation (2) allows one sheeted
and one valued solvability, and in every of them one of minors of the matrix Aj(x̄) (also one
of partial derivatives of the function) has the maximal absolute values among all minors.
So, doesn’t destroying a generality, we assume that in Ω some of minors, say the minor
placed on the first n − 1 columns of the Jacoby matrix, has positive maximal absolute
values. Then, by the theorem on implicit functions ([5, 12, 15, 17]), we may solve the
equation (2) with respect to the first n− 1 variables. Denote by ξ̄ = (ξ2, ..., ξn) a vector of
independent variables. Then, x1 is possible to represent as a function x1 = x1(ξ̄) of these
independent variables. Denote by A0(ξ̄) the matrix constructed from the matrix A0(x̄) by
replacing of the variable x1 by the function x1 = x1(ξ̄). In other words we consider the
functional matrix A0(ξ̄) as a matrix depending on ξ̄. Denote by G(1) the minimal value
of Gram determinant for gradients of entries of the matrix A0(ξ̄) (differentiation is taken
with regard to ξ̄), i.e.

G(1) = min
ξ̄

det
(
A1ξ̄ ·At1ξ̄

)
.

Thus, A1ξ̄ means the matrix of a size (n− 1)× rm received from A0 by differentiation
in regard to ξ̄, A1ξ̄ = A′0(ξ̄). So, the matrix A1(x̄) being considered as a matrix of ξ̄,
differs fromA1ξ̄. Similarly, we can, beginning from the matrix Aj−1, form a matrix Ajξ̄
assuming that G(j) > 0 for all considered j > 0. For a positive number a > 0 we write
h(a) = a+ a−1. We have a ≤ h(a), h(a) = h(a−1), and h(ab) ≤ h(a)h(b), for a, b > 0.

Lemma 1. Let ΠH be a part of a surface (4) included in E(H), k > 1 and G(k) > 0.
Then under the conditions above we have:

µ (ΠH) ≤ KH1/k ·G−1/k
(k) ·Qn

k ;

Qk = log H̃; H̃ = max
{
h(H), h(C(1)), ..., h(C(k−1)), h(G(k)), h(L)

}
,

and K is a constant, and numbers C(2), ..., C(k−1) are defined by equalities

C(1) = H1/2C
1/2
(2) , C(2) = H1/3C

1/3
(3) , ..., G(k) = H1/kC

1/k
(k−1).
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The proof of the lemma 1 is given in [11, 13]. Following lemma is a generalization of
this lemma ([11, 13]).

Lemma 2. Under the conditions of the lemma 1 there exist an absolute constant K1 such
that:

µ (ΠH) ≤ K1H
1/k ·G−1/k

k · Q̃nk .

Let F (x̄) be some polynomial. Let’s consider the trigonometric integral (3), in the
domain Ω with a boundary consisted of finite number of algebraic surfaces. Gradient of
this function is a matrix A0:

A0 = ∇F =

∥∥∥∥ ∂F∂x1
, ...,

∂F

∂xn

∥∥∥∥ .
Let everywhere in Ω

‖∇F‖ =

√(
∂F

∂x1

)2

+ · · ·+
(
∂F

∂xn

)2

6= 0.

We assume that the boundary of the domain Ω is a union of surfaces defined by finite
number of algebraic equations of a view H(x̄) = 0. Not breaking a generality, we can take
this number equal to 1. Assume, also, that the Jacoby matrix of the system of functions
F,H has rank 2.

It is clear that the matrix A1(x̄) looks like

A1 = A1(x̄) =

∥∥∥∥∥∥∥
∂2F
∂x21

... ∂2F
∂x1∂xr

· · · · · ·
∂2F

∂xr∂x1
...∂

2F
∂x2r

∥∥∥∥∥∥∥ , (5)

and the matrix Ak−1(x̄) is combined of all partial derivatives of order k ≥ 2 of the function
F (x̄). Let now G̃k−1 be a minimal value of the product of n − 2 least singular numbers
of the matrix Ak−1. Similarly, we can, beginning from the matrix Aj−1, form a matrix
Ajξ̄ assuming that G̃(j) > 0 for all considered j > 0. Now we formulate analogs of the

lemmas 1 and 2 for the case r = n− 2 designating the numbers G(j) and Gj as G̃(j) and

G̃j , respectively.

Lemma 3. Let ΠH be a part of a surface (4) included in E(H) and G̃1 > 0. Then for
the area µ(ΠH) we have the bound

µ(ΠH) ≤ C0HG̃
−1
(1)℘̃

r,

where

℘̃ = r2 log
[
h
(
G̃(1)

)
h (H)h (L)

]
,

and C0 is an absolute constant.
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Lemma 4. Let k ≥ 1 and G̃(k) > 0. Then under the conditions of the lemma 1 we have:

µ (ΠH) << H1/kG̃
−1/k
(k) ℘rk;

℘̃k = 3r2 log H̃; H̃ = max
{
h (H) , h

(
C̃(1)

)
, ..., h

(
C̃(k−1)

)
, h
(
G̃(k)

)
, h (L)

}
,

and numbers C̃(1), ..., C̃(k−1), G̃(k) are defined by equalities

C̃(1) = H1/2C̃
1/2
(2) , ..., C̃(k−1) = H1/kG̃

1/k
(k)

Lemma 5. Let k ≥ 1 and G̃k > 0. Then, under the conditions of the lemma 2, one has:

µ (ΠH) << H1/kG̃
−1/k
k ℘rk.

Lemma 6. There exist such a dissection of the domain Ω into the union of no more than
finite number of subdomains so that the surface integral ϕ(u) =

∫
F (x̄)=u

g(x̄)ds
‖∇F‖ , respectively,

breaks into the sum of the surface integrals being monotonous functions of a variable u,
moreover, the number of addends of the last sum depends on the degree of a polynomial F
only.

Proof. Proof of this lemma we will spend using reasonings of the proof of analogical
lemma from the work [11]. Having given to the variable u some increment, we can write

ϕ(u+ ∆u)− ϕ(u) =

∫
F (x̄)=u+∆u

g(x̄)ds

‖∇F‖
−
∫
F (x̄)=u

g(x̄)ds

‖∇F‖
.

As the domain Ω is closed, the gradient of functions F (x̄) and g(x̄) and their partial
derivatives of the second order are bounded. Consider the Taylor decomposition of the
function F (x̄) in a neighborhood of the point x̄, lying on the surface F (x̄) = u, in the
gradient direction:

F (x̄+ λ∇F )− F (x̄) = λ∇F · ∇F + o(λ).

Let’s pick up λ so that the point F (x̄ + λ∇F ) was placing on the surface F = u + ∆u .
Then, we get

∆u = λ∇F · ∇F + o(λ).

When ∆u is sufficiently small, the second term on the right part is small also. So,

λ =
∆u

∇F · ∇F
+ o(∆u) =

∆u

‖∇F‖2
+ o(∆u).

After of shifting of the argument in the gradient direction the function g(x̄)
‖F‖ takes on an

increment δ which can be written as follows:

δ = ∇
(
g(x̄)

‖F‖

)
· λ∇F (1 + o(λ)) =
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= λ
n∑
i=1

∂F

∂xi

∂g/∂xi
‖F‖

− g

‖F‖3

 n∑
j=1

∂F

∂xj

∂2F

∂xj∂xi

+ o(λ)) =

= λ
∇F · ∇g
‖F‖

− λg
n∑
i=1

∂F

∂xi

 g

‖F‖3

 n∑
j=1

∂F

∂xj

∂2F

∂xj∂xi

+ o(λ)).

Using definition of the matrix A1 given above and denoting ∇̄ = ∇F/ ‖∇F‖, we can
rewrite the last equality as below:

δ =
λ

‖F‖
(
∇F · ∇g − g(A1∇̄, ∇̄)

)
=

∆u

‖F‖3
(
∇g · ∇F − g(A1∇̄, ∇̄)

)
.

Under the conditions imposed on a gradient, as shown above, the domain Ω may be
dissected into finite number of subdomains which pairwisely intersecting by parts of the
boundary only, and where the equation F (x̄) = u allows one sheeted solvability with
respect to one and the same variable. Let’s consider one of them where the mentioned
equation is solved with respect, say, to x1:

x1 = ψ(x2, ..., xn); (x2, ..., xn) ∈ ω,

and ω is an domain of changing for independent variables. Having fixed any point ξ̄0 ∈ ω
, we will define the mapping ψ̄ in ω − ξ̄0 = {∆y ∈ Rn−1|ξ̄0 + ∆y ∈ ω} which puts to each
point ∆y in correspondence the point (ψ(ξ0 + ∆y), ξ0 + ∆y) on the surface F = u, and
will consider tangential linear mapping

Φ : ∆y 7→ ψ(ξ̄0) + ψ(ξ̄0) ·∆y; ∆y ∈ ω − ξ̄0. (6)

The image of this mapping is a tangential linear variety (hyper plane) to the surface F = u
in the point (ψ(ξ̄0), ξ̄0). Let’s notice that the point (Φ(ξ̄), ξ̄) of the tangential hyper plane
will situated from the corresponding point (ψ(ξ̄), ξ̄) on the surface F = u at a distance
o
(∣∣Φ(∆y)− ψ̄(∆y)

∣∣) which is of order o(∆u). At each point x̄ of the surface F = u the
gradient ∇F is orthogonal to the tangential hyper plane. Really,

∇F · Φ′(~ξ)∆x =

(
∂F

∂x1
, ...,

∂F

∂xn

)
·

·

((
∂F

∂x1

)−1(
− ∂F
∂x2

∆x2−, , ,−
∂F

∂xn
∆xn

)
,∆x2, ...,∆xn

)
= 0.

When λ is defined as above, the point x̄ + λ∇F where x̄ ∈ Π(u), belongs to the surface
Π(u + ∆u); here by Π(u) we designate the surface defined by the equation F = u in a
wider open domain Ω′ ⊃ Ω . For any open domain Ω′ the surface Π(u+ ∆u)

⋂
Ω entirely

lies in Ω′ for all enough small values of |∆u|. The mapping Ψ : Π(u) → Ω′ defined as
Ψ(x̄) = x̄+ λ∇F is one-one mapping when |∆u| is sufficiently small. Really,

Ψ(x̄) = x̄+

(
∆u

‖∇F‖2
+ o(|∆u|)

)
∇F = x̄+ ∆u

∆F

‖∇F‖2
+ o(|∆u|),
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and at sufficiently small |∆u| the Jacoby matrix of this mapping can be represented as a
sum of identity matrix and a Jacoby matrix of the mapping

x̄ 7→ Ψ(x̄)− x̄.

Note that when u and ∆u are fixed then we have Ψ(x̄) − x̄ = λ(x̄)∇F (x̄), and we can
define partial derivatives of the function λ(x̄) from the identity

F (x̄+ λ(x̄)∇F (x̄))− F (x̄) = ∆u.

If we take partial derivatives both sides of this identity with respect to the variables of
x̄ then we get the system of linear equations from which we can define required partial
derivatives. Since the domain is closed and the matrix A1(x̄) (see (4)) is not degenerating,
then as it follows from Cramer’s Rule all of obtained partial derivatives will be bounded.
So, at sufficiently small values of ∆u, determinant of the Jacoby matrix of the mapping
x̄ 7→ Ψ(x̄) tends to 1 as ∆u→ 0, i.e. this determinant will be distinct from zero everywhere
in considered domain. So, Ψ is a bijective mapping for sufficiently small |∆u|.

We put: D(u) = {x̄ ∈ Ω|F (x̄) = u}. Then, the surface D(u + ∆u) tends to D(u) as
∆u→ 0 (pointwisely and uniformly). Ψ(D(u)) is a closed subset of D(u+ ∆u). Further,
a prototype D(u+ ∆u) of the same mapping we will designate as D′(u+ ∆u). Then, we
have:

ϕ(u+ ∆u)− ϕ(u) =

∫
D′(u+∆u)

⋂
D(u)

(
g(x̄+ λ∇F )

‖∇F (x̄+ λ∇F )‖
− g(x̄)

‖∇F (x̄)‖

)
ds+

+

∫
D(u+∆u)\Ψ(D(u))

g(x̄)ds

‖∇F (x̄)‖
−
∫
D(u)\D′(u+∆u)

g(x̄)ds

‖∇F (x̄)‖
. (7)

Substituting the value found above for an increment, we find for the first surface
integral the following expression:

−∆u(1 + o(1))

∫
F (x̄)=u

(
∇g · ∇F − g(A1∇̄, ∇̄)

)
‖F‖3

ds.

Consider now two remained surface integrals on the right hand side of the equality (6).
They will be transformed by one and the same way. The first integral is taken over the
surface D(u + ∆u)\Ψ(D(u)) which is included between the boundaries D(u + ∆u) and
Ψ(D(u)). It is clear that this piece narrowing, will be pulled off along n− 2-dimensional
surface of an intersection D(u+∆u)

⋂
∂Ω, which tends to the limiting position D(u)

⋂
∂Ω

(it may be empty), as ∆u→ 0.
Let’s denote ω′ an n−1-dimensional domain being a projection of theD(u+∆u)\Ψ(D(u))

(we will use designation ψ′ instead of ψ for the solution of the equation F (x̄) = u+ ∆u).
Dissect now the projection of the boundary D(u+ ∆u)

⋂
∂Ω into the small parts Ei, i =

1, ..., N with the maximal diameter not exceeding ∆u. Now taking any point (ψ′(ξ̄i), ξ̄i)
on Ei draw the ray lying on the tangential hyper plane, being orthogonal to the boundary
D(u+ ∆u)

⋂
∂Ω and intersecting the last at this point. The set of all such rays set up a
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surface. We restrict this surface by a such way that the projection of the got piece of the
surface was coincide with ω′. This surface, consisted of pieces set up by all restricted rays
with top points at Ei. The piece corresponding Ei we denote as Fi = Fi(u,∆u). They set
up something like a tiled covering for the surface D(u+∆u)\Ψ(D(u)), area of which differs
from the area of the surface D(u + ∆u)\Ψ(D(u)) by a value o(∆u). Let ξ̄i ∈ Ei be any
point, ρi be a vector lying on the constructed tangential space to the surface F = u+ ∆u
at the point (ψ′(ξ̄i), ξ̄i), orthogonal to D(u + ∆u)

⋂
∂Ω, and with the endpoint at η̄i of

the boundary of corresponding piece Fi = Fi(u,∆u). For small ∆u we have: |Fi| = |Ei|hi
(here |Ei| expresses n − 2-dimensional volume of Ei), and hi = |ρi| (1 + o(1)), i.e. hi
plays a role of height of Fi which approximately we take as a cylindroid with the base
∆i = {(ψ′(ξ̄i), ξ̄i)|ξ̄i ∈ Ei)} (with an error of order o(∆u) for n − 2-dimensional volume).
Then, we have:∫

D(u+∆u)\Ψ(D(ū))

g(x̄)ds

‖∇F (x̄)‖
=

N∑
j=1

∫
(∆i)

g(x̄)ds

‖∇F (x̄)‖
(1 + o(1)).

Intersection of tangential hyper planes, respectively, to ∂Ω and D(u+∆u) at the point
(ψ′(ξ̄i), ξ̄i) is a tangential n−2- dimensional subspace to D(u+∆u)

⋂
∂Ω at the same point.

Let’s consider three points: a point Pi = (ψ′(ξ̄i), ξ̄i), a point η̄i and a point Ψ−1(ηi). Let
αi be an angle between an external normal vector n̄ to the boundary of Ω and a gradient
∇F . An angle between the segment [η̄i, Pi] and the gradient ∇F , at small ∇u, differs from
the angle αi by a value o(∆u) (or their sum is close to π). From a rectangular triangle we
receive (the told above segment [Ψ−1(ηi), Pi] is here an hypotenuse):

h̄i = |λ| · ‖∇F‖ ctgαi(1 + o(1)) =
∆u

‖∇F‖
ctgαi(1 + o(1)).

As cosαi = n̄ · ∇F, ctgαi = n̄ · ∇F/
√

1− (n̄ · ∇F )2 , then we have:∫
D(u+∆u)\Ψ(D(u))

g(x̄)ds

‖∇F (x̄)‖
=

N∑
j=1

∫
(∆i)

g(x̄)ds

‖∇F (x̄)‖
(1 + o(1)) =

=

N∑
j=1

∆u

∫
(∆i)

g(x̄)ctgαidσ

‖∇F (x̄)‖2
(1 + o(1)) = ∆u(1 + o(1))

∫
Z

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

dσ

‖∇F‖2
,

where dσ designates n−2-dimensional element of the volume, and Z denotes an intersection
of surfaces F = u and ∂Ω (it can consist of several pieces). The similar formula is true for
the third surface integral in (6). Therefore, from the formula (6) one can derive:

ϕ′(u) = lim
∆u→0

ϕ(u+ ∆u)− ϕ(u)

∆u
= −

∫
F (x̄)=u

(
∇g · ∇F − g(A1∇̄, ∇̄)

)
‖F‖3

ds+

+

∫
Z

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

dσ

‖∇F‖2
, (8)
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and the sign before the integral is counted by the scalar product ∇̄ · n̄.
To apply the Stokes formula ([5, p. 645], [16, p. 261]) to the second integral at the

right side of (8), we note that the boundary Z is defined by the system of equations of a
view F = u, H = c. Gram determinant of the functions standing at the left sides of the
equations is non-zero. By this reason surface integral is possible to represent as below:∫

Z

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

dσ

‖∇F‖2
=

∫
∂D(u)

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

√
G0

|J0|
dξ3 · · · dξn
‖∇F‖2

,

and the variables ξ3, ..., ξn denote independent variables after of suitable solution of the
considered system, say, with respect to the first two variables. So, we get integral of a
differential form:

η = Wdξ3 ∧ · · · ∧ dξn; W =
g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

√
G0

|J0|
1

‖∇F‖2

and G0 is a Gram determinant of considered functions F, H, J0 is a determinant

J0 =

∣∣∣∣∣ ∂F
∂x1

∂F
∂x2

∂H
∂x1

∂H
∂x2

∣∣∣∣∣ .
Now we have

dη =

(
∂W

∂x1
dx1 +

∂W

∂x2
dx2 + · · ·+ ∂W

∂xn
dxn

)
∧ dξ3 ∧ · · · ∧ dξn.

Further at the surface F = u, after of solving this equation, the variable x1 stands a
function of independent variables ξ2, ..., ξn (we suppose that this is possible, not breaking
a generality). Then,

dη =

(
∂W

∂x1
dx1 +

∂W

∂x2
dx2 + · · ·+ ∂W

∂xn
dxn

)
∧ dξ3 ∧ · · · ∧ dξn =

dη =

(
∂W

∂x1

(
∂x1

∂ξ2
dξ2 + · · ·+ ∂x1

∂ξn
dξn

)
+
∂W

∂x2
dx2 + · · ·+ ∂W

∂xn
dxn

)
∧dξ3 ∧ · · · ∧ dξn =

=

(
∂W

∂x1

∂x1

∂ξ2
+
∂W

∂x2

)
dξ2 ∧ dξ3 ∧ · · · ∧ dξn + · · ·+

+

(
∂x1

∂ξn

∂W

∂x1
+
∂W

∂xn

)
dξn ∧ dξ3 ∧ · · · ∧ dξn =

=

(
∂W

∂x1

∂x1

∂ξ2
+
∂W

∂x2

)
dξ2 ∧ dξ3 ∧ · · · ∧ dξn.

Now in consent with the Stokes formula (see [12, p. 261]):∫
∂D(u)

η =

∫
D(u)

dη.
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It is obviously, that right hand side of this relation is possible to represent as a surface
integral taken over the surface F = u after of multiplying and dividing by a positive
element of area. Then, from (8) we derive:

ϕ′(u) =

∫
F (x̄)=0

G1(x̄)ds, (9)

where

G1(x̄) =
∂F/∂x1

‖∇F‖

(
∂W

∂x1

∂x1

∂ξ2
+
∂W

∂x2

)
−
(
∇g · ∇F − g(A1∇̄, ∇̄)

)
‖F‖3

.

It is clear that the function G1 is an algebraic function in Ω. Now, let’s dissect the domain
Ω into a finite number of such subdomains Ωi in every of which the function G1 keeps own
sign invariable. Then, the integral (8) splits into the sum of several surface integrals:

ϕ′(u) =
∑

ϕ′i(u), ϕ′i(u) =

∫
Ωi,F (x̄)=u

G(x̄)ds (10)

(notice that when we consider the sum of the integrals
∫
S⊂Z taken on the different sides

of the piece S of a surface, the normal vector n̄ changes the sign, and consequently, such
a sum is equal to zero); the number of domains on the right part of (9) depends on Ω and
a degree of the polynomial F . Let’s designate, in the consent with (9)

ϕ(u) =
∑

ϕi(u), ϕi(u) =

∫
Ωi,F (x̄)=u

g(x̄)ds

‖∇F‖
.

Thus, the equality φ′ (u) =
∑

i φ
′
i (u) =

∑
i

∫
Ωi,F=uG (x̄) ds is true. Since the function

under the surface integral does not change its sign, the function is a monotone function.
The lemma 6 is proved.

Lemma 7. Let Ω be a bounded closed domain of n-dimensional space Rn, n > 1. Let’s
assume that in Ω some r-dimensional surface be given by means of a system of equations

fj(x̄) = 0, j = 1, ..., n− r, 0 ≤ r ≤ n,

with a Jacoby matrix

J = J(x̄) = ‖∂fj
∂xi
‖, i = 1, ..., n, j = 1, ..., n− r

which has, everywhere in Ω, a maximal rank and smooth entries. Let, further a mapping
ξ̄ 7→ x̄ maps some domain Ω′ ⊂ R into Ω with non-degenerating in Ω′ Jacoby matrix

Q = Q(ξ̄) = ‖∂fj
∂xi
‖

with continuous entries. Then for any continuous in the Ω function f(x̄) the formula∫
M
f(x̄)

ds√
G

=

∫
M ′
| detQ | f(x̄(ξ̄))

dσ√
G′
, G′ = det(JQ ·QtJ t)

holds; here M ′ denotes a pre-image of the piece of the surface on given surface, dσ desig-
nates the surface element in coordinates ξ̄.

Proof of this lemma is given in [11, p.92].
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3. Basic results

Consider now the integral (3): ∫
Π
g(x̄)e2πiF (x̄)ds.

Our goal is proving following theorems concerning estimations of surface trigonometric
integrals. Let’s denote

H = max
x̄∈Ω
‖∇F‖, g0 = max

x̄∈Ω
|g(x̄)|.

Designate by Gk−2 and G̃k−2 a minimal value of the product of, respectively, n − 1 and
n− 2 least singular numbers of the matrix Ak−2.

Theorem 1. If k > 2 then there exist a positive constant c0 = c0(r, k, degF ) such that∣∣∣∣∫
Π
g(x̄)e2πiF (x̄)ds

∣∣∣∣ ≤ c0g0 max
(
G−1

1 , H(n−1)/(k−1)G
−1/(k−1)
k−2 ·Qn−1

k−2

)
;

Qk−2 = log H̃; H̃ = max
{
h(H), h(G(1)), ..., h(G(k−2)), h(L)

}
.

Theorem 2. Suppose that the Jacoby matrix Λ0 of the system of functions f(x̄), F (x̄)
has a rank 2. If k > 2 and n ≥ 3 then there exist a positive constant c1 = c1(r, k, degF )
such that ∣∣∣∣∫

Π
g(x̄)e2πiF (x̄)ds

∣∣∣∣ ≤ c1g0 max
(
G̃−1

1 , H(n−3)/(k−1)G̃
−1/(k−1)
k−2 ℘n−2

k−2

)
;

℘̃k−2 = log H̃; H̃ = max
{
h (H) , h

(
G̃(1)

)
, ..., h

(
G̃(k−2)

)
, h (L)

}
,

Note. When k = 2 estimations of these theorems remains valid if to take the first
expression in the sign of maximum.

Proofs of the theorems. Using the formula of the lemma 1 of the work [13] we can
represent the integral ∫

Π
g(x̄)e2πiF (x̄)ds

as a limit

lim
h→0

1

2h

∫
|f(x̄)|≤h,x̄∈Ω

g(x̄) ‖∇f‖ e2πiF (x̄)dx̄. (11)

For every h > 0 the condition |f(x̄)| ≤ h defines some closed subdomain in Ω. We
suppose, in agree with the lemma 6 above, that in the considered domain the surface
integral ∫

F (x̄)=u

‖∇f‖ g(x̄)ds

‖∇F‖
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is a monotone function of u. We can apply the reasonings of the work [13] to transform
the integral under the limit (11) as follows∫

|f(x̄)|≤h,x̄∈Ω
g(x̄) ‖∇f‖ e2πiF (x̄)dx̄ =

∫ M

m
e2πiu

(∫
|f(x̄)|≤h,F (x̄)=u

‖∇f‖ g(x̄)ds

‖∇F‖

)
du.

So, we have: ∫
Π
g(x̄)e2πiF (x̄)ds = lim

h→0

1

2h
×

×
∫ M

m

(∫
F (x̄)=u,|f(x̄)|≤h

‖∇f‖ g(x̄)ds

‖∇F‖

)
(cos 2πu+ i sin 2πu) du.

Applying of the lemma 3, [13] allows us to pass to the limit under the sign of integration.
Then we get: ∫

Π
g(x̄)e2πiF (x̄)ds =

∫ M

m
(cos 2πu+ i sin 2πu)×

× lim
h→0

1

2h

(∫
F (x̄)=u,|f(x̄)|≤h

‖∇f‖ g(x̄)ds

‖∇F‖

)
du.

Using the known method of estimation of this integral (see [2]), one may get a following
bound ∣∣∣∣∫

Π
g(x̄)e2πiF (x̄)ds

∣∣∣∣≤ 2 max
u

∣∣∣∣∣ limh→0

1

2h

(∫
F (x̄)=u,|f(x̄)|≤h

‖∇f‖ g(x̄)ds

‖∇F‖

)∣∣∣∣∣ ≤
≤ 2g0 max

u

(∫
Π,F (x̄)=u

ds

‖∇F‖

)
. (12)

Assume that K ≤ H = max
x̄∈Ω
‖∇F‖. As the norm of the gradient is a square root of the

polynomial ‖∇F‖2, then the subset of the domain Ω where ‖∇F‖ = 0, as a closed subset,
is a Jourdan set with zero measure. Then writing Ω′ = {x̄ ∈ Ω| ‖∇F‖ > 0} we find∣∣∣∣∣

∫
Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

Π
⋂

Ω′
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ =

=
∞∑
j=1

lim
h→0

1

2h

∣∣∣∣∣
∫
|f(x̄)|≤h,x̄∈Ω(j)

g(x̄) ‖∇f‖ e2πiF (x̄)dx̄

∣∣∣∣∣ ; (13)

here the subdomains Ω(j) defined as below

Ω(j) = {x̄ ∈ Ω|2−jK ≤ ‖∇F‖ ≤ 21−jK}.
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To estimate the integral over Ω(j) firstly let’s make change of variables Φ : x̄ 7→ ∇F (x̄):

u1 =
∂F

∂x1
, ..., ur =

∂F

∂xr
.

Then we have: ∣∣∣∣∣
∫

Π
⋂

Ω(j)

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ =

= lim
h→0

1

2h

∣∣∣∣∣∣∣∣
∫ ∣∣f(Φ−1(ū))

∣∣ ≤ h
2−jK ≤ ‖ū‖ ≤ 21−jK

g(Φ−1(ū)) ‖∇f‖ e2πiF (Φ−1(ū))(detA1)−1dū

∣∣∣∣∣∣∣∣ ≤

≤ lim
h→0

1

2h

∣∣∣∣∣∣∣∣
∫

f(Φ−1(ū)) = 0
2−jK ≤ ‖ū‖ ≤ 21−jK

g(Φ−1(ū)) ‖∇f‖ (detA1)−1dū

∣∣∣∣∣∣∣∣ =

=

∫
f(Φ−1(ū))=0,2−jK≤‖ū‖≤21−jK

‖∇f‖ g(Φ−1(ū))(detA1)−1ds∥∥A−1
1 (∇f)

∥∥ ≤

≤ g0R

∫
f(Φ−1(ū))=0,2−jK≤‖ū‖≤21−jK

ds; (14)

here

R = max
x̄∈Ω

‖∇f‖ (detA1)−1∥∥A−1
1 (∇f)

∥∥ .

It is easy to note that ∥∥A−1
1 (∇f)

∥∥ ≥ λ−1
1 ‖∇f‖ ,

where λ1 is a maximal singular number of the matrix A1. Then we realize that

R ≤ G−1
1 ,

and G1 is a minimal value of the product of all singular numbers of the matrix A1, with
exception of λ1.

Consider now the surface integral at last chain of (14). The algebraic equation

f(x1, x2, ..., xn) = 0

has a set of solutions consisted of finite number of connected hypersurfaces (see [12]) of
a view x1 = ϕ(x2, ..., xn). This connected sets will be mapped one-valudely to connected
n− 1 dimensional manifolds of a view ū = Φ(x̄) = (ϕ1(x̄), ..., ϕn(x̄)) with

ϕi(x̄) =
∂F

∂xi
(ϕ(x2, ..., xn), x2, ..., xn)
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Then these manifolds are defined by the equation

f(Φ−1(ū)) = 0. (15)

From the compactness it follows that the set of solutions of this equation decomposes
into n subsets every of which is a finite union of open simple connected components. In
every component partial derivatives of the left hand side of the equation (15) takes maximal
absolute values with respect to one of the variables u1, u2, ..., un. Since the mapping Φ is
one to one mapping then all of open components is possible to include into one subset.
Then, surface integral splits into the union of n integrals of following view:∫

2−jK≤‖ū‖≤21−jK
du1...dun−1 ≤ c0

(
21−jK

)n−1
.

So, summing this estimation for all j = 1, 2, ..., we get the estimation∣∣∣∣∣
∫

Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ 4c0g0K
n−1G−1

1 . (16)

Taking some parameter T > 0 we estimate the part of the integral over the subset Π
⋂

Ω1,
where G1 ≥ T , as below∣∣∣∣∣

∫
Π
⋂

Ω1

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ 4c0g0K
n−1T−1.

The integral over remaining part of the surface where G1 ≤ T we estimate applying the
lemma 2 as follows:∣∣∣∣∣

∫
Π
⋂

Ω1

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ << T 1/k−2 ·G−1/(k−2)
k−2 · Q̃n−1

k−2 .

Define now the parameter T from the equality

Kn−1T−1 = T 1/(k−2)G
−1/(k−2)
k−2 ⇒ T = K

(k−2)(n−1)
k−1 G

1/(k−1)
k−2 .

Then we find: ∫
Π
⋂

Ω
g(x̄)e2πiF (x̄)ds << K

n−1
k−1G

−1/(k−1)
k−2 · Q̃n−1

k−2 .

Theorem 1 is proven.
Consider now the estimation of the integral under the limit (11) by another method.

We have ∣∣∣∣∣
∫

Π
⋂

Ω(j)

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣≤ 2g0 max
u

(∫
Π
⋂

Ω(j),F (x̄)=u

ds

‖∇F‖

)
≤

≤ 2g0K
−1 max

u

(∫
Π
⋂

Ω(j),F (x̄)=u
ds

)
. (17)
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Now we apply the lemma 7, and make change of variables u1 = ∂F
∂x1

, ..., ur = ∂F
∂xr

. Then
this surface will be transformed into the surface defined by the system of equations

f(Φ−1(ū)) = 0, F (Φ−1(ū)) = 0. (18)

By the conditions of the theorem the Jacoby matrix Λ0 of the system of functions
f(x̄), F (x̄) has a rank 2. Applying the lemma 7, we get∫

Π
⋂

Ω(j),F (x̄)=u
ds ≤

∫
2−jK≤‖∇F‖≤21−jK

1×

×
√

det(Λ0 · Λt0)

|detA1|
√∣∣∣det(Λ0A

−1
1 · (At1)

−1
Λt0)
∣∣∣dσ; (19)

here dσ is an surface element at the transformed surface (18), and the sign t over the matrix
means a transposition. Consider square root of the determinant at the denominator of the
expression under integral. There is an integral representation (see [13, p. 131) for it:

1√∣∣∣det(Λ0A
−1
1 · (At1)

−1
Λt0)
∣∣∣ =

= π

∫∫∥∥∥∥∥∥(At
1)
−1

Λt
0

 x
y

∥∥∥∥∥∥≤1

dxdy =
π√

det(Λ0 · Λt0)

∫
∥∥∥(At

1)
−1
ū
∥∥∥≤1

ds;

here the last integral is a surface integral taken over the two-dimensional subspace of Rn
which is a linear span of the gradient vectors of the functions f(x̄), F (x̄). If we substitute
this surface integral by maximal its value taken over all two dimensional subspaces, we
get, in accordance with the theorem 6, §11, ch. 7 (in the suitable form) of the book [6,
p.148] (see also [14, 20]), exactly the product of inverted minimal singular numbers of the
matrix A−1

1 , i. e. maximal singular numbers of the matrix A1. So, the integral at the
right hand side of the equality (19) can be represented as follows:∫

2−jK≤
√
u23+···+u2n≤21−jK

dσ

Σn−2(A1)
,

where Σn−2(A1) means the product of least n − 2 singular numbers of the matrix A1.
Hence, we have the bound∫

2−jK≤
√
u23+···+u2n≤21−jK

dσ

Σn−2(A1)
≤

≤ C2
n

Γ(1 + (n− 2)/2)

π(n−2)/2
(21−jK)n−2G̃−1

1 << Kn−2G̃−1
1 .
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here G̃1 = min
x̄∈Ω

Σn−2(A1) denotes the minimal value of product of last n − 2 (smallest)

singular numbers of the matrix A1. Therefore, we have∣∣∣∣∣
∫
‖∇F‖≤21−jK

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ 2n−1 Γ(1 + (n− 2)/2)

π(n−2)/2
g0K

−1(21−jK)n−2G̃−1
1 .

Summarizing over all j = 1, 2, ..., we obtain:∣∣∣∣∣
∫

Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ Cg0K
n−3G̃−1

1 ; (20)

C = 22nΓ(1 + (n− 2)/2)

π(n−2)/2
.

This estimation is got using constraints over the gradient and the matrix A1. Applying
the lemma 4 we can prove the estimation in the terms of high order derivatives. This
lemma can be applied by following way. Denote by Ω1 subdomain in Ω for all points of
which the condition G̃1 ≤ T is satisfied. We have, in consent with the lemma 4, the bound

µ
(

ΠH

⋂
Ω1

)
<< T 1/(k−2)G̃

−1/(k−2)
k−2 ℘n−2

k−2 ;

℘̃k−2 = 3(n− 2)2 log H̃; H̃ = max {h (H) , h (G1) , ..., h (Gk−2) , h (L)} .

The value of the parameter T can be defined by the condition

Kn−3T−1 = T 1/(k−2)G̃
−1/(k−2)
k−2 .

We have:

T = K
(k−2)(n−3)

k−1 G̃
1/(k−1)
k−2 .

So, we find when n ≥ 2:∣∣∣∣∣
∫

Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ << K
n−3
k−1 G̃

−1/(k−1)
k−2 ℘n−2

k−2 . (21)

Theorem 2 is now proven.
The authors are expressing their sincere thanks to the professor M. Bayramoglu for

valuable remarks concerning the results of the article.
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