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Inverse Boundary Value Problem for Two-Dimensional
Pseudo Parabolic Equation of Third Order with Addi-
tional Integral Condition

A1 Ismailov

Abstract. Inverse boundary value problem for two-dimensional pseudo parabolic equation of third
order with additional integral condition is considered. We first reduce our problem to some equiva-
lent (in some sense) one. Using the Fourier method, the equivalent problem, in turn, is reduced to
the system of integral equations. Then, using contraction mapping method, we prove the existence
and uniqueness for the solution of the system of integral equations, which is also a unique solution
of the equivalent problem. Finally, using equivalence, we prove the existence and uniqueness for
the classical solution of the original problem.
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1. Introduction

By the inverse problem for partial differential equations, we mean a problem that re-
quires to find, along with a solution itself, the right-hand side and (or) some coefficient(s)
of the equation. Inverse problems arise in many fields of human activities, such as seis-
mology, mineral exploration, biology, medicine, quality control of industrial products, etc.
which makes them one of the most important problems in today’s mathematics. If an
inverse problem requires to find not only the solution itself, but also the right-hand side
of the equation, then such an inverse problem is linear. And if it requires to find both
the solution and at least one of the coefficients, then such an inverse problem is nonlinear.
Many mathematicians have studied various inverse problems for some types of partial dif-
ferential equations, such as A.N.Tikhonov [1], M.M.Lavrentiev [2,3], V.K.Ivanov [4] and
their students. More details about these problems can be found in the monograph by
A.M.Denisov [5].

Inverse problems for one-dimensional pseudo parabolic equations of third order have
been considered in [6-8].

In this work, using Fourier method and contraction mapping principle, we prove the
existence and uniqueness of the solution of the nonlocal inverse boundary value problem
for a third order two-dimensional pseudo parabolic equation.
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2. Problem statement and its reduction to the equivalent problem

Let Dy = Qazy x {0 < t < T}, where Quy = {(z,y) : 0 <2< 1,0 <y < 1}
Also, let a(t) > 0, B(t) > 0, f(x,y,t),o(x,y),h(t) be the given functions defined for
xz € [0,1], y €[0,1], t € [0,T]. Consider the following inverse boundary value problem:
find a pair {u(x,t), p(t)} of functions u(zx,t), p(t) which satisfy the equation

ur(2,y, ) = t) (uraa (2, Y, 1) + gy (2,9, 1)) = B) (e (2, Y, 1) + gy (2, y,1)) =

= pulz,y,t) + fz,y,1), (1)
nonlocal initial condition
u(w,y,0) +ou(r,y, T) = p(z,y) (0<2<1, 0<z<1), (2)
boundary conditions
ug(0,9,t) =u(l,y,t) =0 (0<y<1,0<¢t<T), (3)
u(x,0,t) =uy(z,1,t) =0 (0<y <1, 0<t<T), (4)
and the additional condition
/01 /01 w(ay, Hydedy = h(t) (0 < t < T), (5)

where 0 > 0 is a given number.
Denote

C**Y(Dr) = {u(z,y,t) : u(z,y,t) € C**H(Dr), tea(x, Y, 1), tyy(z, y,t) € C(Dr)}.

Definition 1. By the classical solution of the inverse boundary value problem (1)-(5), we
mean a pair {u(z,y,t),p(t)} of functions u(z,t), p(t) such that u(x,y,t) € C*>>1(Dr),
p(t) € C[0,T] and the relations (1)-(5) are satisfied in the usual sense.

The following theorem is true.

Theorem 1. Let 0 < «(t), 0 < B(t) € C0,T], ¢(z,y) € C(Quy), f(z,y,t) € C(Dr),
h(t) € CY0,T] h(t)#0 (0<t<T), >0, and the coherence condition

11
/ / o(x,y)dzdy = h(0) + 6h(T)
0o Jo
be satisfied. Then the problem of finding the classical solution of the problem (1)-(5) is

equivalent to the one of determining the functions u(x,y,t) € C221(Dr)p(t) € C[0,T]
from the relations (1)-(4),

B () — a(t) (/01 (1, y, £)dy — /01 uty(x,(),t)d:x> -
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—B(t) </Olux(1,y,t)dy—/Oluy(x,o,t)dg;> —

1 1
+/O /0 flzyy,t)dedy (0<t<T). (6)

Proof. Let {u(z,y,t),p(t))} be a classical solution of the problem (1)- (5). On inte-
grating the equation (1) with respect to x and y from 0 to 1, we have:

d 1 1

(/01 Ut (1, y,t) — uiz (0, y, t)dy + /01 gy (2, 1,t) — uty(a:,O,t)dm> —
/ t) - )dy+/1uy(

) ( lu;c(l Y,

// u(z,y,t dmdy—i—//fa:y, Ydxdy (0 <t < T).

From the last relation, by (3),(4)we obtain

/ / u(z,y, t)dedy — a(t) </ (1, y, t)dy — /01 uty(x,O,t)dx> —
—B(t) (/0 e (1,9, t)dy — /01 uty(x,O,t)dq:> =
t) /01 /01 u(z,y,t)dxdy —i—/ol /01 fz,y,t)dxdy (0 < t < T). (7)

Now, taking h(t) € C1[0,7] and differentiating (5), we have

—a(t)
—p(t

uz (0, y,t z,1,t) — uy(z,0 t)dm) —

/ 1 / gy, Ddedy = K(1) (0< £ < T) (®)
0 0

By (5) and (8), it follows from (7) that the relation (6) is valid.
Now let’s assume that {u(z,t),p(t)} is a soluton of the problem (1)-(4), (5). Then
from (6) and (7) we obtain

% (/01 /01 u(z,y, t)dedy — h(t)) = p(t) </01 /01 u(z,y, t)drdy — h(t)) (0<t<T).

(9)
By (2) and the coherence condition fol fol o(z,y)dxdy = h(0) + 6h(T'), we have

/o1 /o1 u(@,y,0)dwdy = h(0) +0 (/01 /O1 u(z,y, T)dzdy — h(T)) -
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1 1
= / / u(z,y,0) + ou(z,y, T)dxdy — (h(0) + 6h(T)) =
o Jo

1 1
_ /0 /0 o, y)dedy — (h(0) + 6h(T)) = 0. (10)

The differential equation (9) has the following general solution:

1 1
/ / u(z, y, t)dedy — h(t) = CeloPDdT (11)
0 0

where ' is an arbitrary constant. Let’s require that the solutions (9) satisfy the condi-
tions (10). Then it is easy to obtain

C (1 n 6ef3p(7>d7) —0 .

By 6 > 0, from the last relation we obtain C' = 0 . Substituting C =0 in (11), we

conclude that -
0o Jo

i.e. the condition (5) holds. The theorem is proved.

3. The proof of the existence and uniqueness of the classical solution of
the inverse boundary value problem

We will search for the first component u(z,y,t) of the solution {u(x,y,t),p(t) } of the
problem (1)-(4), (6) in the following form:

o0 o
u(z,y,t) = Z Z Uk (t) cos Az siny,y (12)
n=1k=1
where

Ae = g(Qk S (k=1,2,.), qn= g(2n 1) (n=1,2,..),

1,1
U (t) = 4/ / u(z,y,t) cos \gzsinypydedy (k=1,2,...; n=1,2,...).
0o Jo

Using the method of separation of variables to define the sought coefficients uy, ,(t) (k=
1,2,..;n=1,2,...) of the function u(z,t), from (1), (2) we obtain

(14 it (1)) W (8) + 17 o B(E g (t) =
=Fpn(tiu,p) (k=1,2,...,n=1,2,.;0<t <T), (13)
uk,n(o) + 6uk,n<T) = ka,n(k = 17 27 = 17 27 ) 9 (14)
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where
=N 42 (k=1,2,..;n=1,2,..),

Fk’n(t;u,p) = fkm(t) +pt)urn(t) (k=1,2,..5n=1,2,..),

1,1
Jrn(t) = 4/ / f(z,y,t) cos Mgz sinypydedy (k=1,2,...; n=1,2,...),
o Jo

Ol = 4/ / o(x,y) cos \grsinypydedy (k=1,2,..; n=1,2,...).
0o Jo
Solving the problem (13), (14), we find

t ”%,nﬁ(s)ds

S0 1447 als) t . _
y (t) O Prn s N ka (T, U, p) . I7 Lpg p(s) dr
k = _— s —
M 7 1, B(s)ds 0 1+ Mz na(T)

Ly oe 0 e

¢ My B(s)ds

2
T Hi, B(s)ds
—— + ,u,% nB(s)ds

CJ0 1hud als) T . _ [t Bl
56 Pin® / Fk7n(7_7 U,p) e f-r 1+”% na(s)d
4= Jo 14 Mi,na(T)

T (k=1,2,..;n=1,2,...).

T u%’nﬁ(

PR =
Substituting the expressions uy ,(t) (k =1,2,...;7n=1,2,...) in (12), we have

¢ Hr o B(s)ds )
fO 1+,u% na(s) ft “k,nﬁ(s)ds

t) = S (Pk,ne ! ¢ Fk,TL(T?u?p) U 1+M% a(s)d
u(x,y,t) = ZZ 2B + ; 71_{_#%”0[(7_)6 : T—

_0 2 oS
1+ de g pels)

T HRpB(s)ds
—_— B s)ds

— 2
0 14 2 a(s) T . _rt HEn (
de Fion / Fin(T5u,p) . I [} &r
0

2 2

T Fepfo)ds 1+ pg alr)
—_ ) k

0 1+Mk§’ncx(s) i

€Os A\, sin v, y.

1+ de
Now, from (6), by (12), we obtain

H+3 3 (- ’f“(%—A’“) (et (8) + Bt (t)) =

k=1n=1 In

1 1
t+/0/0f(w,y,t)dwdy 0<t<T).

Further, from (13) we have

. 1 (1)

1k (), () + B ukn(t) = Fin(tiu,p) — uj,(t) = mulm(tﬂ—
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2
Mﬂﬁn(t;u,p)(k =1,2,.,n=1,2,.;0<t<T),
L+ pi,oft)

" | B0
/

&Fk (t;u,p)(k=1,2,....n=1,2,..;0<t <T). (18)
1+/J/i’na(t> 77’[» ) ) ) ) ) b b b — —

From (17), taking into account (18), we obtain

s =) {0 [ [ stegtsay + S5 (32

k=1n=1 n
B(t) alt) '
X (Huima(t)uh,n(t) + Wﬂm(t, u,p))} (19)

To obtain the equation for the second component p(t) of the solution {u(x,t),p(t)} of
the problem (1)-(4), (5), we substitute the expression (15) in (19) to get

s =) {0 [ [ sttty + S5 (B2

k=1n=1 Tn

t PhnBls)ds )
T2 ats) ¢ Hip pB(s)ds

N 0 1/2 «@(s
ﬁ(t) Dk Itug o) /t Fk,n(T; u,p) 6_ fr 1+“%,n°‘(5> dr—
1+ i3 a(t) o MRt o 142 a(T)

’ 14 6e 0 HEac® ’

T HRnB(s)ds

t PhnBe)ds

—Jo 1+u2 a(s) T . _ Pkn7A 77
(56 Pln / ka(T,u,p) e fr 1_;'_“% na(s) dT
R 0n o 14 2 alr)

_|_
—Jo 2 a(s
1+6€ 1+Hk,’n (s)

14 M%ma

+%Fk,n(t; um)) } : (20)

Thus, the solution of the problem (1)-(4), (6) is reduced to the solution of the system
(16), (20) with respect to the unknown functions u(z,y,t) and p(t).

To treat the uniqueness of the solution of (1)-(4), (6), we will significantly use the
following lemma.

Lemma 1. If {u(z,y,t),p(t)} is any solution of the problem (1)-(4), (6), then the func-
tions

1,1
U (t) = 4/ / u(z,y,t) cos \gzsiny,ydedy (k=1,2,...; n=1,2,...)
0o Jo

satisfy the system (15) on [0,T].
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Proof. Let {u(x,y,t),p(t)} be any solution of the problem (1)-(4), (6). Then, multi-
plying both sides of the equation (1) by the function 4 cos Az siny,y (k= 1,2,...; n =
1,2,...), integrating the obtained equality with respect to x and y from 0 to 1 and using
the relations

1,1
4/ / ug(x,y,t) cos \pz sin y,ydedy =
0 JO
d 1 1
= <4/ / u(x,y,t) cos \gx sin v, ydrdy > = uﬁm(t)(k‘ =1,2,..; n=1,2,..),
0 0
1
4/ / Ugy (T, Y, 1) cOs Az sin v ydady =
0 0
1
= -\ (4/ / u(x,y,t) cos \gx sin v, ydrdy > = f)\iuk,n(t) (k=1,2,..;, n=1,2,...),
0 0
1
4/ / Uyy (2, Y, t) cos Az sin ypydedy =
0 0
1 1
—2 <4/ / u(zx, y,t) cos \gx sin vy, ydzdy ) = —’y,%uk’n(t) (k=1,2,..; n=1,2,..),
0 JO
4/ / Utz (T, Y, t) cOs Az sin v, ydrdy = )\kukn( J(k=1,2,..; n=1,2,..),
0 0

4/ / Upyy (2, Y, t) cos \px sinypydady = —yguz’n(t) (k=1,2,..; n=1,2,...),
o Jo

we get the validity of the equation (13).

Similarly, from (2) it follows that the condition (14) holds.

Thus, ug,(t) (k= 1,2,...; n = 1,2,...) are the solutions of the problem (13), (14).
Hence it directly follows that the functions uy,(t) (k = 1,2,...; n = 1,2,...) satisfy the
system (15) on [0,7]. The lemma is proved.

It is clear that if wy,(t) = 4]0 fo x,y,t) cos \pxsinypydedy (b = 1,2,...5 n =
1,2, ...) are the solutions of the system (15), then the pair {u(z,y,t),p(t)} of the functions
w(@,y, t) = D> 07 > p0y U p(t) cos \gzsiny,y  and p(t) is a solution of the system (16),
(20).

Lemma 1 has the following corollary.

Corollary 1. Let the system (16), (20) have a unique solution. Then the problem (1)-(4),
(6) cannot have more than one solution, i.e. if the problem (1)-(4),(6) has a solution, then
1t 15 unique.

1. Denote by B3 [9] the totality of all functions u(x,y,t) of the form

oo o0

u(z,y,t Z Z Uk (t) cos Apx siny,y

n=1k=1
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in Dp, where each of the functions uy,(t) (k = 1,2,..; n = 1,.2,..) is continuously
differentiable on [0, 7] and

{ZZ(uz,n\|uk,n<t>uqoﬂ)2 } < 4.

n=1k=1

N =

Define the norm on this set as follows:

lu, y,t)llgs {ZZ(MH ki (t ”00T1> }

=1k=1

N[

2. Denote by E:?;, the space consisting of topological product
Bip x C[0,T].
The norm of the element z = {u,p} is defined by the formula

21, = e, 9, )l g+ [P oo -

It is known that BS,T and E; are Banach spaces.
Now let’s consider in the space E% the operator

(I)(U,p) = {q)l(u>p)> (1)2(u7p)}7

where

(o] oo
O (u,p) = u(x,y,t) = ZZ ) cos A\gx siny,y
n=1k=1

Do (u, p) = p(t),,
and iy ,(t) (k=1,2,..; n=1,2,...) and p(t) are equal to the right-hand sides of (15) and
(20), respectively.

It is not difficult to see that
B B Heno)

) <1,
1+ u%yna(t) alt)” 1+ u%ma(t)

L+ 1} pa(t) > pii pr(t),

T K}, B(s)ds

- 2 «@(s
148 @ > 108 < (AR 9D) O + ) = A+ A2+ A 5.

From these relations we obtain

{Z (N%,n||ak,n(t)||c[oj]>2 } < 3(22 )‘k |§0k:n| ) +

n=1 k=1 n=1k=1
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1
2
+3 (Z (A vn I erml) ) (Z (\ea |90k:,n|)2> +

n=1k=1 n=1k=1

N

+3

oY

S (0 leraml) ) +3(1+9)

n=Lk=L a(t) llep *
T 00 o0 % I oo oo %
0 n:lk:l =

+THp(t)HC[0,T} (ZZ <Mkn [[wk,n(t )HC[()T) ) ] ) (21)

k=1 k=1
//fxy, dedy

5Ol < |67,

|

+’ Oégt)‘ co,T) (ﬁ </0Ti i Fenlr)F dT>é ’

+
co,7)

N

p(t)

a(t +

~—

Q
(=)
=
/
N
3
i 3
MR
T[¢
~
=
s
-

s
h®
~

[l
+
oS
3
i 3
MR
bl
gk
F
AS)
x>
s
~
D=

n=1k=1

+T'[[p)ll oo,y (ZZ (i, [Jun(t) ®lleo.m) ) )} + ( (s [ (8)])? dT) +

2

(Z 'Yn |fkn )2 d7'>

n=1k=1

+ el cpo,m (ZZ pi Jlun(t Netom) ) } (22)

Assume that the data of the problem (1)-(4), (6) satisfy the following conditions:

1~S0($vy)v90x(xay)v‘me(l‘»y)a@y(x,y)a@xy(%?/)a@yy(%?ﬂ € C(wa)a
Qoa:acy(xu y), (pxyy(xvy)7 Soxxac(xvy)7 pryy(xa y) € LQ(QZIJy)ﬂ
gox(O,y) = (p(l,y) = Somc(lay) =0 (0 <y< 1)7
P(2,0) = @y(z,1) = pyy(2,0) =0(0 <z < 1).

2'f(x7y7t) € C<DT)7 fm(x7y7t)7fy(xvyat) € L2<DT)7
f (17y7t>:f (x707t):0(0§9673/§1, OStST)
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3.6>0, 0<alt)eC[0,T],0< B(t) € Cl0,T), h(t)eccCo,T],
ht)#£0 (0<t<T).
Then from (21)- (22) we obtain

N

o, 5.0l g, {i(xknuko |C[0T)} {iki(uknum ||COT])2} <

k=
< A1(T) + BuT) [p(0) oo s, . D)l g (23)
150y < As(T) + Ba(T) It oz e, Dl g (24)

where

A(T) = 5 [[paaa (2, y)HLQ(Qw) + 3 || Payy (2, y)HLQ(Qw) + 3 || Paay (@, y)HLQ(Qw) +

1
+3 lewaa (@, ) 1, (q,,) +(1+9) Ha(t) VT (5 1fe (@, )l Ly +3 ||fy(may7t)||L2(DT)) ;

clo,1]

1
By (T) =5(1+0) )| = o

1 1

Ax(T) = | [n(0)] 1Hc[o,ﬂ{’h (t)_/o /o Jlesy Ddedy com1

[e el t)

(ZZ ) W <”g0x(x,y)HL2(sz) + H‘Py(x?y)HLz(sz)

k=1k=

()

\/T||f($’y’t)||L2(DT)> + H||fx(x7yvt)HC[O,T]HLQ(Q )

clo.1]

n H||fy(a:,y,t)HO[O,T]HLQ(O,lJ }

Y
1

2@ = [0 (3 052)
1 BA(t)
X[ a(t) [l o Il (t) C[O,T}T+1 '

From the inequalities (23)-(24) it follows

e, 5.z, + 158 | cpoum <
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< A(T) + B [p(®) ooz e ) g, (25)
where ) )
A(T) :ZAi(T)7 B(T) :ZBZ'(T)’ :
=1 =1

So we can prove the following theorem.

Theorem 2. Let the conditions 1-4 be satisfied and
(A(T) +2)*B(T) < 1. (26)

Then the problem (1)-(4), (6) has a unique solution in the ball K = KR(”ZHE% <R=
A(T) +2) of the space E3..

Proof. Consider in the space E% the equation
z = %z, (27)
)

where z = {u, p}, and the components ®;(u,p)(i = 1,2) of the operator $(u, p) are defined
by the right-hand sides of the equations (16), (20), respectively. Consider the operator
$(u, p) in the ball K = Kp(|[z]l g3 < R=A(T) +2) of E3.

Similar to (25), we obtain the following estimates for every z, z1, 29 € Kp:

2] < ACT) + BT [p(0) g0 1, .0l ., (28)

[®z1 — Pzl pz < B(T)R <le(t) =2l cpory + llualz, y,t) — u2($7y=t)\|Bg’T) - (29)

Then from the estimates (28) and (29), by (26), it follows that the operator $ acts in
the ball K = Kg and is a contraction operator. Therefore, the operator $ has a unique
fixed point {u,p} in the ball K = Kpg, which is a unique solution of the equation (27),
i.e. a unique solution of the system (16), (20) in the ball K = Kg.

As an element of the space BS 1 » the function u(z, y, t) is continuous and has continuous
derivatives uz(z,y,t), uxm(x,y,zé), Uy(2,y,1), Usy(T,y,1), uyy(x,y,t)in Dr.

Now it is not difficult to see from (13) that

1
a(t)

{ZZ@memwf}sﬂ

n=1k=1

[tz v, )15, +
C[0,7] 2T

L2(Qxy)} '

Hence, it is clear that u¢(x,y,t), U (2, Y, 1), Utyy(z,y,t) are continuous in Dr.

It is not difficult to verify that the equation (1) and the conditions (2)-(4), (6) are
satisfied in the usual sense. Thus, the solution of the problem (1)—(4), (6) is a pair of
functions {u(z,t),p(t)}. By the corollary of Lemma 1, this solution is unique in the ball
K = Kpg. The theorem is proved.

i H 1f (2, y,t) + p(t)ul@, y, )|l o, H

Using Theorems 1 and 2, we obtain the unique solvability of the problem (1)—(5).



54 A L Ismailov

Theorem 3. Let all the conditions of Theorem 2 be satisfied and the coherence conditions

1,1
/0 /0 o(z,y)dxdy = h(0) + 6h(T)

hold. Then the problem (1)-(5) has a unique classical solution in the ball K = KR(HZHE% <
R = A(T) +2) of the space E3.
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