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Abstract. It is known that the Riesz transform of a Lebesgue integrable function is not Lebesgue
integrable. In the present paper, we study the asymptotic behavior of the distribution function of
the Riesz transform of a Lebesgue integrable function as A — +o0o and as A — 0+.
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1. Introduction

The j-th Riesz transform of a function f € L,(R?), 1 < p < 400 is defined as the
following singular integral:

‘ T Tj—Yj L
R] (f)(.CE) =) ill)% (ye R oyl>e) |l‘ — y|d+1 f(y)dya J 1,d,

where Cg) = %.

The Riesz transform is one of the important operators in harmonic analysis. It has
been shown in [2, 6, 10, 11] that this transform plays an essential role in applications to
the theory of elliptic partial differential equations.

From the theory of singular integrals (see [10]) it is known that the Riesz transform is a
bounded operator in the space L,(R%), p > 1, that is, if f € L,(R%), then R;(f) € L,(R?)
and the inequality

IR; I, < CPIIf |, (1)

holds. In the case f € Li(R%) only the weak inequality holds:

miw e R |(BN)@)| > A < Sl )

where m stands for the Lebesgue measure, CP), C} are constants independent of f.
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In [3, 4, 5,7, 8,9, 10] the boundedness of the operator R; in other function spaces (in
the spaces of Sobolev, Besov, Campanato, Morrey, etc.) was studied.

Note that the Riesz transform of a function f € L;(R?) is not Lebesgue integrable. In
work [1] using the notion of A-integrating functions, the analogue of Riss equality is proved
for the class of functions f € Li(R?). In this paper we study the asymptotic behavior
of the distribution function of the Riesz transform of a Lebesgue integrable function as
A — 400 and as A — 0+ and find a necessary condition and a sufficient condition for the
summability of the Riesz transform.

2. Asymptotic behavior of the distribution function of the Riesz
transform as A\ — 400

In this section we studying the asymptotic behavior of the distribution function of the
Riesz transform as A — +oo.
Theorem 1. Let f € Li(R%). Then the equation

lim Am{z € R*: |(R;f)(z)| >} =0 (3)

A——400

holds.
Proof: Since f € Li(R?), then for every ¢ > 0 there exists n € N and r > 0 such that

17 = 17l < o7 @

where [f[7(z) = [f]"x(B(0;7))(x), [f(2)]" = f(x) for [f(x)] <n, [f(x)]" = 0 for [f(x)] >
x(B(0;7))(x) - characteristic function of the ball B(0;7) = {z € R? : |z| < r}. Tt
follows from (2) and (4) that for every A > 0 the inequality

miz € R Ry(f ~ @] > 3} < S~ Al < o (5)

holds. Since the function [f]?(z) is bounded, then we get that [f]" € L,(R?) for each

T

p > 1. Tt follows that R;[f]* € L,(R?) for each p > 1. Denote

Fi(z) = R;([f]})(x) - x(B(0; 2r)), Fa(x) = R;([f]}")(x) - x(R\B(0;2r)).

Then
R;([f]7)(x) = Fi(z) + Fa(x),

The function Fi(x) is concentrated on the closed ball B(0;2r), and the function Fy(z) is
concentrated on the set R\ B(0;2r). For every p > 1 from the inclusion R;([f]?) € L,(R?)
it follows that Fy(z) € L,(R?). Since the function F(z) is concentrated on the bounded
set, then we have that Fy(z) € L1(R?%). Then for sufficiently large values of A > 0

Mz € R [Fi(2)] > 0} < / |Fy (z)|dz < = (6)
4 4 {(z€Rd: |Fy ()| >)/4} 8
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On the other hand, for any z € R%\ B(0;2r) we have

R(UD@] <) [ “””;fd@' 12 )y

B(0;r) |ZC -

<14 n _ @ 7<d
<X Ry = SR < 21

This shows that the function F5(z) is bounded. Then it follows from (6) that for sufficiently
large values of A > 0

n A
mize R (R(@] > 3} <mize B [R@)| >3} < ()
It follows from (5) and (7) that for sufficiently large values of A > 0

m{z € R': |(R;f)(z)| > A}

Smfe e B R (@) > 5} +mle € B |Ry(F @) > 5} < &

This shows that the equation (3) holds. Theorem 1 is proved.

3. Asymptotic behavior of the distribution function of the Riesz
transform as A — 0+

In this section we studying the asymptotic behavior of the distribution function of the
Riesz transform as A — 0+.
Theorem 2. Let f € Li(R%). Then the equation

i d . . —
Jim m{a € B (B 1) (@) > A=l || fa)da (®)
holds, where 04 = (d2d1),,(2)[%} and [451] - integer part of a number 4.
At first we prove the auxiliary lemma.
Lemma 1. If f € Ll(Rd and fRd x)dx = 0, then the equation
m{z € R%: (R f)(x)] > A} =o(1/A), A = 0+ (9)

holds.
Proof of Lemma 1. At first assume that the function f is concentrated on some ball
B(0;r) C R?. In this case, for values of |z| > 2r from the equality

Zj

BN = [ o Sy

:'Y(d)/ % y|d+1f( y)dy — )/B |x|d+1f( y)dy

B(0;r) |$*
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_ Tj— Y z; }
= - f(y)dy,
@ /BW) Lx—ywﬂ fafart | F)

we get that

2] — Jar — y| ™ A
. < )
‘(ij)(l’)’ = Y(d) /B(O;T) |:’xj |:E _ y|d+1 . |x’d+l + |l‘ _ y|d+1 ’f(y)’dy

d+1

1 |y
<7 / x| - |yl - + f(y)ldy
D Jion [' il 2 =+ e | M)

Co
< |z|d+1

where co = y(q)r(d + 2)29% Y| f||z,. Then it follows that
m{z € R*: |(R;jf) ()] > \} <m{z € R*: |2| <2r} + m{z € R ;70 > A}

d
2

:F(:H)-@r)der{xeRd: |z| < ‘”Q/?} :F(gil)' [(QT)dJr (C/\O>d+ly

2

whence it follows asymptotic equality (9).

Now let’s consider the general case. From the condition [p, f(z)dz = 0 it follows that
for any € > 0 there exist the functions f; and fo satisfying the condition: f = fi + fs, the
function f; is concentrated on some ball B(0;r) C R? and [p4 f1(2)dz = 0, the function
f2 satisfies the inequality [|f2|[z, < z&;, where C7 is a constant in estimation (2). Since
the function fi is concentrated on the ball B(0;7) C R? and [p, fi(x)dz = 0, then for
the function f equality (9) is satisfied, and therefore there exists A(¢) > 0 such that for
0 < A < A(e) the inequality

€

A
Am{z € RY - |(R; fi)(2)] > 5} < 5 (10)
holds. On the other hand, from the inequality (2) it follows that
A €
wmiz € B : |(Rif)@)] > 3} <261 folle, < (1)

for any A > 0. From inequalities (10), (11) we get

xm{z € R : |(Ryf)(@)| > A}

< xm{z € R : |(Rif1)(x)] > %}Jr)\m{x € RY: |(Rjfo)(2)] > g} <e

for 0 < A < A(¢). This shows that equality (9) was satisfied for all functions f € L;(R%),
satisfying the condition [ pa J(w)dz = 0. This completes the Proof of the Lemma 1.
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Proof of Theorem 2. In the case [p, f(x)dz = 0 the assertion of the Theorem
follows from Lemma 1. Let’s consider the case [, f(z)dz = a # 0. Denote by fi(z) =

d
anax(B(0; 1))(x), where ng) = F(QII), X(B(0; 1)) is a characteristic function on the
unit circle B(0; 1) and fa(z) = f(x) — fi(z). Then [p, f2(z)dz =0, and from Lemma 1
1
m{z € R%: |(ij2)(x)|>)\}:0</\>,)\—>0+. (12)

Since for any z € {x € R?: z; > 2}

|(R; f1)()] = n(a)vayl]

Ti—Yj
9 gy
/B(O;l) |z — y[d+t

|| +1 |z +1
Snmdlal/ T T = eyl T
(d) 1(d) B(:1) x| — 1[4+ (d) ||| — 1]+

|| 24
< Yyl o+ Yol
= Y(d) |z — 1]&+1 V(d) |z

1 24
[(R)f1)(z)] > ’V(d)|a|W - 7(d)|04||$|m7

and for any A > 0

0
> A} = de = 29

{wER™: |aj[>Alz]d+1)

1 d

1 1\ @1 1 /1)@
d' —_— = d‘ —_ = — —_
m{x € R : \:1:|d+1>/\} m{a}ER : \x!<</\> } ” (/\>

then we get that

|z,

d .
m{z € R : P

lim supAm{z € R%: |(Rjf1)(x)] > A} < Y(a)0dll, (13)
A—0+
liminfAm{z € R?: |(R;f1)(z)] > A} > Yaybalal. (14)
A—0+

It follows from (13), (14) that
Jim Am{e € B |(R;f2)(@)] > A} = @ falal. (15)
For any 0 < € < 1, by the inclusions
{z € R: (R fi)(@)] > (1+e)A\{z € R+ [(R;f2)(x)| > eA} C

C{ze Rt |(B;f)(x)| > A} €
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C{z e R": |(Rjfa)(w)] > eA}U{z € RT: [(R;fi)(x)] > (1 —)A}

and equalities (12), (15) we have

0
lmsupAm{a € R [()(@)] > 3} < 0%
A—0+ 1—¢
lminfAm{z € B |(B;f)(2)] > A} > 2@l
A—0+ J = 1+¢ )

This implies the equation (8) and completes the proof of the Theorem 2.
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