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Estimations of Functions from Lizorkin-Triebel Spaces
Reduced by Corresponding Polynomials
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Abstract. In this paper the integral inequalities as estimation of the norms of functions reduced
by polynomials, are proved.
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1. Introduction

In this paper, with help method of integral representation, we estimate the norms of func-
tions from the Lizorkin-Triebel spaces Fé’e(G), where [ € (0,00)", p,0 € (1,00), G C R"
(introduced and studied from point of view of embedding theory in papers [1]), reduced
by polynomials, determined in n-dimensional domains satisfying the flexible p-horn con-
dition. In other words, we prove inequality type

1D (f = Pealfs o))y < € |AD)| 1617, (61, (1)
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Note that the normed linear space FIZ),Q(GSD) of functions f € L'¢(G) with the finite norm,
defined in paper [5]
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and let G € R™; 1 € (0,00)";m; € N; ki € No; 1 < p,0 < 00; ¢o(t) = (p1(t), ..., pn(t)),
©;(t) > 0(t > 0) be continuously-differentiable functions, tliIJrrlogpj(t) =0, tlir}rlogoj (t) =
— —

= L; <o00,j7 =1,2,....,n. We denote the set of such vector functions by A. For any
r € R™ we assume

1 .
Gw(t)(x) =GN Lp(t)(a:) =Gn {y Hyp — gl < §cpj(t), ji=1,2, ,n} .
In case p;(t) = t%,\; > 0, j = 1,2,...,n the spaces FZI)ﬁ(G), was introduced and studied

view of theory embedding in monograph [1].
Was proved that [6] for f € FAQ(G@), p,0 € (1,00), 1 € (0,00)", if
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then there exists DV f € L,(G) and the following identity is valid [5]
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where

1
il < [ 107 Gt o+ 6] e
X1

2. Main results.

Theorem 1. Let G C R" satisfy the condition of flexible p-horn 1 <p < q < 00, v =
= (V1, .., 0p), v; > 0 be entire j = 1,...,n; A1) < oo (i =1,...,n) and let f € Fé’e(Gq,).
Then

10" ( = Peaf. o)l < CLAD] It 6,

where A(1) = maxA®(1), A1) = | P (cpj(t))_”j_%Jré 20 4t and C the constant

pi(t)t

C—r

independent of f.

Proof. Under the conditions of our theorem, there exist generalized derivatives DV f €
L,(G) and for almost each point # € G the integral representation (4) and (5) with the
kernels is valid. In (4) and (5) if p (¢(t),2) = —2p(t), 0 <t <T =1 we get identity

D*fa) = F 4 3 [ [ 20 (25 2E0) fo s

where

w01 < [ 157 ()] @+ gt
1
the support of this identity (6) is contained in the flexible ¢ horn

s+ Vg =z+ |J {y: <¢?Zt)> eS(Li),izl,...,n},

0<t<T<1

where L; (,y) € C° (R™) (i =1,...,n) , and let

1 )
S(L;) =suppL; C I,y = {x ) < icpj(l),j =1, ,n}

Let U be is open set contained in the domain G; hence forth we always assume that

U+V(p) CG.
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Hence, by the Minkowski inequality, we have:

1D* (f = p—a(fs2)ll g < ZHF g (7)

here
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Applying generalized Minkowski inequality (8) for F;(x,t), we get
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From the Holder inequality (¢ < r < o0) we have
11
1E: (5 O)llqu < 1B (5 ) (mesU)a . (11)

Now estimate the norm [|E; (-, ¢)|,.;;. Let x be a characteristic function of the set S(L;).
Again applying the Holder inequality for representing the function in the form (10) in the
case l <p<r<oo,s<ras (lzl—%%—%),weget
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It is assumed that |L;(x,y, 2)| <
For any z € U we have
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From inequalities (12)-(15) it follows that
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From inequalities (7) and (9) for (r = ¢) we have

1D (f = Pealfs o))y < C |AD)| 11, g6

This completes the poof of Theorem 2.

The following theorem is proved analogously to Theorem 1.

Theorem 2. Let all the conditions of Theorem 2.1 be fulfilled. Furthermore, let ' €
(0,00)", 1 <0 <6 < oo, if

i1=1,2,...,n, then
D% (f = Balfo o)l gt g,y < € A 1 lle 6,

where AN (1) = maxA»' (1) and C the constant independent of f.
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