Caspian Journal of Applied Mathematics, Ecology and Economics V. 8, No 2, 2020, December ISSN 1560-4055

Estimations of Functions from Lizorkin-Triebel Spaces Reduced by Corresponding Polynomials

B.S. Jafarova, K.A. Babayeva

Abstract. In this paper the integral inequalities as estimation of the norms of functions reduced by polynomials, are proved.

Key Words and Phrases: integral representation, the space Lizorkin-Triebel, flexible φ -horn, generalized derivatives.

2010 Mathematics Subject Classifications: Primary 26A33, 42B35, 46E30

1. Introduction

In this paper, with help method of integral representation, we estimate the norms of functions from the Lizorkin-Triebel spaces $F_{p,\theta}^l(G)$, where $l \in (0,\infty)^n$, $p,\theta \in (1,\infty)$, $G \subset \mathbb{R}^n$ (introduced and studied from point of view of embedding theory in papers [1]), reduced by polynomials, determined in n-dimensional domains satisfying the flexible φ -horn condition. In other words, we prove inequality type

$$||D^{v}(f - P_{l-1}(f, x))||_{q,G} \le C |\tilde{A}(1)| ||f||_{\tilde{F}_{n,\theta}(G_{\omega})},$$
 (1)

where

$$\tilde{A}(1) = \max_{i} A^{i}(1) = \int_{0}^{1} \prod_{j=1}^{n} (\varphi_{j}(t))^{-v_{j} - \frac{1}{p} + \frac{1}{q}} \frac{\varphi_{i}^{1}(t)}{\varphi_{i}(t)} dt,$$

$$||f||_{\tilde{F}_{p,\theta}(G_{\varphi})} = \sum_{i=1}^{n} \left\| \left\{ \int_{0}^{t_0} \left[\frac{\delta_i^{m_i} \left(\varphi_i(t), G_{\varphi(t)} \right) D_i^{k_i} f(\cdot)}{\left(\varphi_i(t) \right)^{l_i - k_i}} \right]^{\theta} \frac{d\varphi_i(t)}{\varphi_i(t)} \right\}^{\frac{1}{\theta}} \right\|_{p}. \tag{2}$$

Note that the normed linear space $F_{p,\theta}^l(G_{\varphi})$ of functions $f \in L^{loc}(G)$ with the finite norm, defined in paper [5]

$$||f||_{F_{p,\theta}^l(G_\varphi)} = ||f||_{p,G} +$$

29

$$+\sum_{i=1}^{n} \left\| \left\{ \int_{0}^{t_0} \left[\frac{\delta_i^{m_i} \left(\varphi_i(t), G_{\varphi(t)} \right) D_i^{k_i} f\left(\cdot \right)}{\left(\varphi_i(t) \right)^{l_i - k_i}} \right]^{\theta} \frac{d\varphi_i(t)}{\varphi_i(t)} \right\}^{\frac{1}{\theta}} \right\|_{p}, \tag{3}$$

where

$$\|f\|_{p,G} = \|f\|_{L_p(G)} = \left(\int_G |f(x)|^p dx\right)^{\frac{1}{p}},$$

$$\delta_i^{m_i}(\varphi_i(t)) f(x) = \int_{-1}^1 \left|\Delta_i^{m_i}\left(\varphi_i(t), G_{\varphi(t)}\right), f(x)\right| dt,$$

$$\Delta_i^{m_i}\left(\varphi_i(t), G_{\varphi(t)}\right) f(x) = \begin{cases} \Delta_i^{m_i}(\varphi_i(t)) f(x), & \text{for } [x, x + m_i \varphi_i(t) e_i] \subset G_{\varphi(t)}, \\ 0, & \text{for } [x, x + m_i \varphi_i(t) e_i] \not\subseteq G_{\varphi(t)}, \end{cases}$$

$$\Delta_i^{m_i}(\varphi_i(t)) f(x) = \sum_{i=0}^{m_i} (-1)^{m_i - j} C_{m_i}^j f(x + j \varphi_i(t) e_i), \quad e_i = \{0, \dots, 0, 1, 0, \dots, 0\},$$

and let $G \subset R^n$; $l \in (0, \infty)^n$; $m_i \in N$; $k_i \in N_0$; $1 < p, \theta < \infty$; $\varphi(t) = (\varphi_1(t), ..., \varphi_n(t))$, $\varphi_j(t) > 0$ (t > 0) be continuously-differentiable functions, $\lim_{t \to +0} \varphi_j(t) = 0$, $\lim_{t \to +0} \varphi_j(t) = 0$

$$G_{\varphi(t)}(x) = G \cap I_{\varphi(t)}(x) = G \cap \left\{ y : |y_j - x_j| < \frac{1}{2}\varphi_j(t), \ j = 1, 2, ..., n \right\}.$$

In case $\varphi_j(t) = t^{\lambda_j}, \lambda_j > 0, j = 1, 2, ..., n$ the spaces $F_{p,\theta}^l(G)$, was introduced and studied view of theory embedding in monograph [1].

Was proved that [6] for $f \in F_{p,\theta}^l(G_\varphi)$, $p,\theta \in (1,\infty)$, $l \in (0,\infty)^n$, if

$$A^{i}(T) = \int_{0}^{T} \prod_{j=1}^{n} (\varphi_{j}(t))^{-t_{j}} \frac{\varphi_{i}^{1}(t)}{(\varphi_{i}(t))^{1-l_{i}}} dt < \infty, \ i = 1, 2, ..., n,$$

then there exists $D^v f \in L_p(G)$ and the following identity is valid [5]

$$D^{v}f(x) = f_{\varphi(T)}^{(v)}(x) + \sum_{i=1}^{n} \int_{0}^{T} \int_{R^{n}} L_{i}^{(v)}\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{\varphi(t)}\right) \times$$

$$\times f_{i}(x+y, t) \prod_{j=1}^{n} (\varphi_{j}(t))^{-1-v_{j}} \frac{\varphi_{i}^{1}(t)}{\varphi_{i}(t)} dt dy, \tag{4}$$

$$f_{\varphi(T)}^{(v)}(x) = \prod_{i=1}^{n} (\varphi_{j}(T))^{-1-v_{j}} \int \Omega^{(v)}\left(\frac{y}{\varphi(T)}, \frac{\rho(\varphi(T), x)}{3\varphi(T)}\right) f(x+y) dy, \tag{5}$$

where

$$|f_i(x,t)| \le \int_{-1}^{1} |\delta_i^{m_i}(\varphi_i(t)) f(x + u\varphi_i(t))| du.$$

2. Main results.

Theorem 1. Let $G \subset \mathbb{R}^n$ satisfy the condition of flexible φ -horn $1 , <math>v = (v_1, ..., v_n)$, $v_j \ge 0$ be entire j = 1, ..., n; $A^i(1) < \infty$ (i = 1, ..., n) and let $f \in F^l_{p,\theta}(G_{\varphi})$. Then

$$\|D^{v}(f - P_{l-1}(f, x))\|_{q,G} \le C |A(1)| \|f\|_{\tilde{F}_{p,\theta}^{l}(G_{\varphi})},$$

where $A(1) = \max_{i} A^{i}(1)$, $A^{i}(1) = \int_{0}^{1} \prod_{j=1} (\varphi_{j}(t))^{-v_{j} - \frac{1}{p} + \frac{1}{q}} \frac{\varphi_{i}^{1}(t)}{\varphi_{i}(t)^{1 - l_{i}}} dt$ and C the constant independent of f.

Proof. Under the conditions of our theorem, there exist generalized derivatives $D^v f \in L_p(G)$ and for almost each point $x \in G$ the integral representation (4) and (5) with the kernels is valid. In (4) and (5) if $\rho(\varphi(t), x) = -x\varphi(t)$, $0 < t \le T = 1$ we get identity

$$D^{v}f(x) = P_{l-1}^{(v)} + \sum_{i=1}^{n} \int_{0}^{1} \int_{R^{n}} L_{i}^{(v)} \left(\frac{y}{\varphi(t)}, \frac{p(\varphi(t), x)}{\varphi(t)}\right) f_{i}(x+y, t) \times$$

$$\times \prod_{j=1}^{n} (\varphi_{j}(t))^{-1-v_{j}} \frac{\varphi_{i}^{1}(t)}{\varphi_{i}(t)} dt,$$

$$(6)$$

where

$$|f_i(x,t)| \le \int_{-1}^{1} |\delta_i^{m_i}(\varphi_i(t))| f(x + u\varphi_i(t)) u,$$

the support of this identity (6) is contained in the flexible φ horn

$$x + V(\varphi) = x + \bigcup_{0 < t < T \le 1} \left\{ y : \left(\frac{y}{\varphi(t)} \right) \in S(L_i), i = 1, ..., n \right\},$$

where $L_i(\cdot, y) \in C_0^{\infty}(\mathbb{R}^n)$ (i = 1, ..., n), and let

$$S(L_i) = \sup pL_i \subset I_{\varphi(1)} = \left\{ x : |x_j| < \frac{1}{2}\varphi_j(1), j = 1, ..., n \right\}.$$

Let U be is open set contained in the domain G; hence forth we always assume that $U + V(\varphi) \subset G$.

Hence, by the Minkowski inequality, we have:

$$||D^{v}(f - p_{l-1}(f, x))||_{q, U} \le \sum_{i=1}^{n} ||F_{i}(\cdot, t)||_{q, U},$$
(7)

here

$$F_{i}(x,t) = \int_{0}^{1} \int_{R^{n}} L_{i}^{(v)} \left(\frac{y}{\varphi(t)}, \frac{p(\varphi(t), x)}{\varphi(t)}\right) f_{i}(x+y, t) \times$$

$$\times \prod_{i=1}^{n} \left(\varphi_{j}(t)^{-1-v_{j}} \frac{\varphi_{i}(t)}{\varphi_{i}(t)}\right) dt dy.$$
(8)

Applying generalized Minkowski inequality (8) for $F_i(x,t)$, we get

$$||F_{i}(\cdot,t)||_{q,U} \leq \int_{0}^{1} ||E_{i}(\cdot,t)||_{q,U} \left| \prod_{j=1}^{n} (\varphi_{j}(t))^{-1-v_{j}} \frac{\varphi_{i}^{1}(t)}{(\varphi_{i}(t))^{1-l_{j}}} \right| dt, \tag{9}$$

here

$$E_i(x,t) = \int_{P_n} L_i^{(v)} \left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{\varphi(t)} \right) f_i(x+y, t) dy.$$
 (10)

From the Holder inequality $(q \le r \le \infty)$ we have

$$||E_i(\cdot,t)||_{q,U} \le ||E_i(\cdot,t)||_{r,U} (mesU)^{\frac{1}{q}-\frac{1}{r}}.$$
 (11)

Now estimate the norm $||E_i(\cdot,t)||_{r,U}$. Let χ be a characteristic function of the set $S(L_i)$. Again applying the Holder inequality for representing the function in the form (10) in the case $1 , <math>s \le r$ as $\left(\frac{1}{s} = 1 - \frac{1}{p} + \frac{1}{r}\right)$, we get

$$||E_i(\cdot,t)||_{r,U} \le \sup_{x \in U} \left(\int_{R^n} |f_i(x+y)|^p \chi\left(\frac{y}{\varphi(t)}\right) \right)^{\frac{1}{p} - \frac{1}{r}} \times$$

$$\times \sup_{y \in V} \left(\int_{U} |f_i(x+y,t)|^p dx \right)^{\frac{1}{r}} \left(\int_{U} \left| \tilde{L}_i \left(\frac{y}{\varphi(t)} \right) \right|^s dy \right)^{\frac{1}{s}}. \tag{12}$$

It is assumed that $|L_i(x, y, z)| \leq C \left| \tilde{L}_i(x) \right|$, and $\tilde{L}_i \in C_0^{\infty}(\mathbb{R}^n)$.

For any $x \in U$ we have

$$\int_{R^n} |f_i(x+y,t)|^p \chi\left(\frac{y}{\varphi(t)}\right) dy \le$$

$$\leq \int_{U+V} |f_i(x+y,t)|^p dy \leq (\varphi_i(t))^{pl_i} \left\| (\varphi_i(t))^{-l_i} \delta_i^{m_i} (\varphi_i(t)) f \right\|_{p,C}^p. \tag{13}$$

For $y \in V$

$$\int_{U} |f_{i}(x+y,t)|^{p} dx \leq \int_{U+V} |f_{i}(x,t)|^{p} dx \leq (\varphi_{i}(t))^{l_{i}} \left\| (\varphi_{i}(t))^{-l_{i}} \delta_{i}^{m_{i}} (\varphi_{i}(t)) f \right\|_{p,G}, \quad (14)$$

$$\int_{\mathbb{R}^n} \left| \widetilde{L}_i \left(\frac{y}{\varphi(t)} \right) \right|^s dy = \left\| \widetilde{L}_i \right\|_s^s \prod_{j=1}^n \varphi_j(t). \tag{15}$$

From inequalities (12)-(15) it follows that

$$||E_{i}(\cdot,t)||_{r,U} \leq C_{1} ||\tilde{L}_{i}||_{s} \prod_{j=1}^{n} (\varphi_{j}(t))^{\frac{1}{s}} (\varphi_{i}(t))^{l_{i}} \times ||(\varphi_{i}(t))^{-l_{i}} \delta_{i}^{m_{i}} (\varphi_{i}(t))||_{r,G},$$

$$(16)$$

and by the inequality (12) we have

$$||E_{i}(\cdot,t)||_{q,U} \leq C_{2} \prod_{j=1}^{n} (\varphi_{j}(t))^{\frac{1}{s}} (\varphi_{i}(t))^{l_{i}} \times ||(\varphi_{i}(t))^{-l_{i}} \delta_{i}^{m_{i}} (\varphi_{i}(t)) f||_{q,G}.$$

$$(17)$$

From inequalities (7) and (9) for (r = q) we have

$$||D^{v}(f - P_{l-1}(f, x))||_{q,G} \le C |\tilde{A}(1)| ||f||_{F_{p,\theta}(G_{\varphi})}$$

This completes the poof of Theorem 2.

The following theorem is proved analogously to Theorem 1.

Theorem 2. Let all the conditions of Theorem 2.1 be fulfilled. Furthermore, let $l^1 \in (0,\infty)^n$, $1 < \theta < \theta_1 < \infty$, if

$$A^{i,1}(1) = \int_{0}^{1} \prod_{j=1}^{n} (\varphi_{j}(t))^{-v_{j}-l_{j}^{1}-\frac{1}{p}+\frac{1}{q}} \frac{\varphi_{i}^{1}(t)}{(\varphi_{i}(t))^{1-l_{i}}} dt < \infty$$

i = 1, 2, ..., n, then

$$||D^{v}(f - P_{l-1}(f, x))||_{F_{a,\theta}^{l}(G_{\varphi})} \le C |A^{1}(1)| ||f||_{F_{p,\theta}^{l}(G_{\varphi})},$$

where $A^{(1)}(1) = \max_{i} A^{i,1}(1)$ and C the constant independent of f.

References

- [1] O.V. Besov, V.P. Ilyin, S.M. Nikolskii, Integral representations of functions and embeddings theorems, M.Nauka, (1996) 480 p.
- [2] A.J. Jabrailov, M.K. Aliev, Estimation of functions reduced by corresponding polynomials, Embed. theorems Harm., Analysis, Collection of papers devoted to the 70-th anniversary of academian A.C. Gadiyev, Inst. of Math. And Mech. Of National Academy of sciences of Azerbaijan, (2007) 28-135.
- [3] A.J. Jabrailov, To theory of spaces of differentiable functions, Trudy IMM of NAS of Azerbaijan, issue XII, (2005) 27-53.
- [4] A.M. Najafov, The embedding theorems of space $W_{p,\varphi,\beta}^l(G)$, Math. Aeterna, 3, no 4, (2013) 299-308.
- [5] A.M. Najafov, A.M. Gasymov, On properties of functions from Lizorkin-Triebel-Morrey spaces, Journal of Mathematical Sciences, 29, issue 1, (2019) 51-61.
- [6] A.M. Najafov, N.R. Rustam, A.M. Gasymova, Integral representation functions in defined domains satisfying flexible φ-horn condition, Vest.Acad.Nauk Chechen Resp., 43, no 6, (2018) 16-22 (in Russian).
- [7] S.M. Nikolskii, Approximation of function of many group of variables and imbedding theorem, M.Nauka, (1977) 456.
- [8] Z.V. Safarov, L.Sh. Kadimova, F.F. Mustafayeva, Estimations of the norm of functions from Sobolev-Morrey type space reduced by polynomials, Trans. of NAS od Azerbaijan, Issue Mathematic, 37, no 4, (2017) 150-155.
- [9] S.L. Sobolev, Introduction to theory of cube formulas, M.Nauka, (1974) 375.

B.S. Jafarova

Azerbaijan University of Architecture and Construction, Baku, Azerbaijan

K.A. Babayeva

Received 19 September 2020 Accepted 16 December 2020