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On the Solvability of One Inverse Boundary Value
Problem for the Linearized Benny–Luc Equation with
Non-self-adjoint Boundary Conditions

B.K. Velieva

Abstract. An inverse problem is investigated for the linearized Benny-Luc equation with non-
self-adjoint boundary conditions. First, the original problem is reduced to an equivalent problem
(in a certain sense), for which the existence and uniqueness theorem is proved. Further, on the
basis of these facts, the existence and uniqueness of the classical solution to the original problem
are proved.
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1. Introduction

Many problems in mathematical physics and continuum mechanics are boundary value
problems that reduce to the integration of a differential equation or a system of partial
differential equations for given boundary and initial conditions. Many problems in gas
dynamics, the theory of elasticity, the theory of plates and shells are reduced to the
consideration of high-order partial differential equations [1]. Differential equations of the
fourth order are of great interest from the point of view of applications (see, for example, [2,
3]). Partial differential equations of Benny – Luc type have applications in mathematical
physics (see [3]).

Problems in which, together with the solution of a particular differential equation,
it is also required to determine the coefficient (coefficients) of the equation itself, or the
right side of the equation, in mathematics and in mathematical modeling are called inverse
problems. The theory of inverse problems for differential equations is a dynamically devel-
oping branch of modern science. Recently, inverse problems have arisen in various fields of
human activity, such as seismology, mineral exploration, biology, medicine, quality control
of industrial products, etc., which puts them in a number of urgent problems of modern
mathematics. Various inverse problems for certain types of partial differential equations
have been studied in many works. Let us first of all note here the works of A.N. Tikhonov
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[4], M.M. Lavrent’ev [5, 6], V.K. Ivanov [7] and their students. More details can be found
in the monograph by A.M. Denisov [8].

The theory of inverse boundary value problems for fourth-order equations is still un-
derstudied. The works [9–12] are devoted to inverse boundary value problems for the
Benny – Luc equation.

The aim of this work is to prove the existence and uniqueness of solutions to the in-
verse boundary value problem for the Benny-Luc equation with non-self-adjoint boundary
conditions.

2. Statement of the problem and its reduction to an equivalent problem

Let DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. Consider the following inverse boundary
value problem in a rectangle DT : find a pair {u(x, t) , a(t)} of functions u(x, t), a(t)
satisfying the equation [3]

utt(x, t)− uxx(x, t) + αuxxxx(x, t)− βuxxtt(x, t) = a(t)u(x, t) + f(x, t) (x, t) ∈ DT , (1)

with initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (0 ≤ x ≤ 1), (2)

with non-self-adjoint boundary conditions

u(1, t) = 0, ux(0, t) = ux(1, t) , uxx(1, t) = 0, uxxx(0, t) = uxxx(1, t) (0 ≤ t ≤ T ) (3)

and with the additional condition

u(0, t) = h(t) (0 ≤ t ≤ T ), (4)

where α > 0, β > 0 - are fixed numbers, f(x, t), ϕ(x), ψ(x), h(t) - are given functions.
Denote

C̃4,2(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ) , uttx(x, t),

uttxx(x, t), uxxx(x, t), uxxxx(x, t) ∈ C(DT )} .

Definition 1. By the classical solution of the inverse boundary value problem (1) - (4)
we mean a pair {u(x, t) , a(t)} of functions u(x, t) ∈ C̃4,2(DT ), a(t) ∈ C[0, T ], satisfying
equation (1) and conditions (2) - (4) in the usual sense.

Similarly to [13], the following theorem is proved.

Theorem 1. Let ϕ(x), ψ(x) ∈ C[0, 1], h(t) ∈ C2[0, T ] , h(t) 6= 0 (0 ≤ t ≤ T ), f(x, t) ∈
C(DT ) and the conditions of consistency are hold

ϕ(0) = h(0) , ψ(0) = h′0). (5)

Then the problem of finding a classical solution to problem (1) - (4) is equivalent to the
problem of determining the functions u(x, t) ∈ C̃4,2(DT ) and a(t) ∈ C[0, T ] from relations
(1) - (3) and the condition

h′′(t)− uxx(0, t) + αuxxxx(0, t)− βuxxtt(0, t) = a(t)h(t) + f(0, t) ( 0 ≤ t ≤ T ) . (6)
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3. Solvability of the inverse boundary value problem

It is known that [14], function sequences

X0(x) = 2(1− x), X2k−1(x) = 4(1− x) cosλkx, X2k(x) = 4 sinλkx (k = 1, 2, ...), (7)

Y0(x) = 1, Y2k−1(x) = cosλkx, Y2k(x) = x sinλkx (k = 1, 2, ...) (8)

form a biorthogonal system, and system (7) forms a Riesz basis for L2(0, 1), where
λk = 2kπ (k = 1, 2, ...). Then an arbitrary function ϑ(x) ∈ L2(0, 1) is expanded into
a biorthogonal series:

ϑ(x) = ϑ0X0(x) +

∞∑
k=1

ϑ2k−1 X2k−1(x) +

∞∑
k=1

ϑ2k X2k(x) ,

where

ϑ0 =

∫ 1

0
ϑ0 Y0 (x)dx , ϑ2k−1 =

∫ 1

0
ϑ2k−1 Y2k−1 (x)dx , ϑ2k−1 =

∫ 1

0
ϑ2k−1 Y2k−1 (x)dx .

It is known that [15],

ϑ(x) ∈ C2i−1[0, 1], ϑ(2i)(x) ∈ L2(0, 1) ,

ϑ(2s)(1) = 0, ϑ(2s+1)(0) = ϑ(2s)(1) (s = 0, i− 1 ),

then
∞∑
k=1

(
λ2ik ϑ2k−1

)2 ≤ 1

2

∥∥∥ϑ(2i)(x)
∥∥∥2
L2(0,1)

,

∞∑
k=1

(
λ2ik ϑ2k

)2 ≤ 1

2

∥∥∥ϑ(2i)(x)x+ 2iϑ(2i−1)(x)
∥∥∥2
L2(0,1)

. (9)

Under assumptions

ϑ(x) ∈ C2i[0, 1], ϑ(2i+1)(x) ∈ L2(0, 1) ,

ϑ(2s)(1) = 0, ϑ(2s−1)(0) = ϑ(2s−1)(1) (i ≥ 1, s = 0, i ),

the validity of estimates [15]:

∞∑
k=1

(
λ2i+1
k ϑ2k−1

)2 ≤ 1

2

∥∥∥ϑ(2i+1)(x)
∥∥∥2
L2(0,1)

,

∞∑
k=1

(
λ2i+1
k ϑ2k

)2 ≤ 1

2

∥∥∥ϑ(2i+1)(x)x+ (2i+ 1)ϑ(2i)(x)
∥∥∥2
L2(0,1)

. (10)

is established. In order to study problem (1) - (3), (6), consider the following space.
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Denote by B5
2,T [15] the collection of all functions u (x, t) of the form

u (x, t) =
∞∑
k=0

uk (t)Xk (x) ,

considered on DT , for which all functions uk (t) ∈ C[0, T ] and

JT (u) ≡ ‖u0(t)‖C[0,T ] +

+

( ∞∑
k=1

(
λ5k ‖u2k−1(t)‖C[0,T ]

)2) 1
2

+

( ∞∑
k=1

(
λ5k ‖u2k(t)‖C[0,T ]

)2) 1
2

,

where the function Xk (x) (k = 0, 1, 2, ...) are defined by (7).
The norm in this set is defined as follows: ‖u(x, t)‖B5

2,T
= J”(u).

Let E5
T denote the space of vector functions {u(x, t), a(t)} such that u (x, t) ∈ B5

2,T ,
a (t) ∈ C[0, T ]. Equip this space with a norm

‖z‖E5
T

= ‖u(x, t)‖B5
2,T

+ ‖a(t)‖C[0,T ] .

It is clear that B5
2,T and E5

T are Banach spaces.
Since system (7) forms a Riesz basis in L2 (0, 1) and system (7) and (8) forms biorthog-

onal to the system of functions in L2 (0, 1), then the first component u (x, t) of the solution
{u(x, t), a(t)} of problem (1) - (3), (6) will be sought in the form

u (x, t) = u0 (t)X0 (x) +

∞∑
k=1

u2k−1 (t)X2k−1 (x) +

∞∑
k=1

u2k (t)X2k (x) , (11)

where

u0(t) =

∫ 1

0
u(x, t)Y0(x)dx,

u2k−1(t) =

∫ 1

0
u(x, t)Y2k−1(x)dx, u2k(t) =

∫ 1

0
u(x, t)Y2k(x)dx (k = 1, 2, ...) , (12)

is the solution of the following problem:

u′′0 (t) = F0 (t;u, a) (0 ≤ t ≤ T ), (13)

u′′2k−1(t) + β2ku2k−1(t) =
1

1 + βλ2k
F2k−1 (t;u, a) (0 ≤ t ≤ T, k = 1, 2, ...), (14)

u′′2k (t) + β2ku2k (t) =
1

1 + βλ2k
F2k (t;u, a) +

+
2λk(1 + 2αλ2k)

1 + βλ2k
u2k−1 (t) +

2βλk
1 + βλ2k

u′′2k−1 (t) (0 ≤ t ≤ T, k = 1, 2, ...), (15)
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uk(0) = ϕk, u′k(0) = ψk (k = 0, 1, 2, ...) , (16)

moreover

β2k =
λ2k(1 + αλ2k)

1 + βλ2k
, Fk(t;u, a) = a(t)uk(t) + fk(t), fk(t) =

∫ 1

0
f(x, t)Yk(x)dx,

ϕk =

∫ 1

0
ϕ(x)Yk(x)dx, ψk =

∫ 1

0
ψ(x)Yk(x)dx (k = 0, 1, ...).

Solving problem (13) - (16) we find:

u0(t) = ϕ0 + ψ0t+

∫ t

0
(t− τ)F0(τ ;u, a)dτ, (17)

u2k−1(t) = ϕ2k−1 cosβkt+
1

βk
ψ2k−1 sinβkt+

1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t− τ)dτ,

(18)

u2k(t) = ϕ2k cosβkt +
1

βk
ψ2k sinβkt +

1

βk(1 + βλ2k)

∫ t

0
F2k(τ ;u, a) sinβk(t − τ)dτ +

+
λk(1 + 2αλ2k + αβλ4k)

(1 + βλ2k)
3

[
tϕ2k−1 sinβkt+

(
1

βk
sinβkt− t cosβkt

)
1

βk
ψ2k−1 +

+
1

βk(1 + βλ2k)

∫ t

0

(∫ τ

0
F2k−1 (ξ;u, a) sinβk (t− ξ) dξ

)
sinβk (t− τ) dτ

]
+

+
2βλk

βk(1 + βλ2k)
2

∫ t

0
F2k−1(τ ;u, a) sinλk(t− τ)dτ. (19)

After substituting the expression uk(t) (k = 0, 1, ...) in (11), to determine the compo-
nent u(x, t) of the solution to problem (1) - (3), (6), we obtain:

u(x, t) =

(
ϕ0 + ψ0t+

∫ t

0
(t− τ)F0(τ ;u, a)dτ

)
X0(x)+

+

{
ϕ2k−1 cosβkt +

1

βk
ψ2k−1 sinβkt+

1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t − τ)dτ

}
X2k−1(x)+

+

∞∑
k=1

{
ϕ2k cosβkt +

1

βk
ψ2k sinβkt +

1

βk(1 + βλ2k)

∫ t

0
F2k(τ ;u, a) sinβk(t − τ)dτ +

+
λk(1 + 2αλ2k + αβλ4k)

(1 + βλ2k)
3

[
tϕ2k−1 sinβkt+

(
1

βk
sinβkt− t cosβkt

)
1

βk
ψ2k−1 +
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+
1

βk(1 + βλ2k)

∫ t

0

(∫ τ

0
F2k−1 (ξ;u, a) sinβk (t− ξ) dξ

)
sinβk (t− τ) dτ

]
+

+
2βλk

βk(1 + βλ2k)
2

∫ t

0
F2k−1(τ ;u, a) sinλk(t− τ)dτ

}
X2k(x). (20)

Now, from (6), taking into account (11), we have:

a(t) = [h(t)]−1
{
h′′(t)− f(0, t) + 4

∞∑
k=1

((λ2k + αλ4k)u2k−1(t) + βλ2ku
′′
2k−1(t))

}
. (21)

Further, from (14), taking into account (18), we obtain:

(λ2k + αλ4k)u2k−1(t) + βλ2ku
′′
2k−1(t) =

= F2k−1(t;u, a)− u′′2k−1(t) =
βλ2k

1 + βλ2k
F2k−1(t;u, a)− β2ku2k−1(t) =

=
βλ2k

1 + βλ2k
F2k−1(t;u, a)− β2k

(
ϕ2k−1 cosβkt +

1

βk
ψ2k−1 sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t − τ)dτ

)
. (22)

In order to obtain an equation for the second component a(t) of the solution {u(x, t), a(t)}
to problem (1) - (3), (6), we substitute expression (22) into (21):

a(t) = [h(t)]−1
{
h′′(t)− f(0, t) + 4

∞∑
k=1

[
βλ2k

1 + βλ2k
F2k−1(t;u, a)−

−β2k
(
ϕ2k−1 cosβkt +

1

βk
ψ2k−1 sinβkt+

1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t − τ)dτ

)]}
.

(23)
Thus, the solution of problem (1) - (3), (6) is reduced to the solution of system (20),

(23) with respect to unknown functions u(x, t) and a(t).
To study the question of uniqueness of the solution of problem (1) - (3), (6), the

following lemma plays an important role.

Lemma 1. If {u(x, t), a(t)} is any solution to problem (1) - (3), (6), then the functions
uk(t) (k = 0, 1, 2, . . .) defined by relation (12) satisfy the counting system (17), (18) and
(19) on [0, T ].

Obviously, if uk(t) =
∫ 1
0 u(x, t)Yk(x)dx (k = 0, 1, ...) is a solution to system (17), (18)

and (19), then a pair {u(x, t), a(t)} of functions u(x, t) =
∑∞

k=0 uk(t)Xk(x) and a(t) is a
solution to system (20), (23).

Lemma 1 has the following



On the Solvability of One Inverse Boundary Value Problem 61

Corollary 1. Let system (20), (23) have a unique solution. Then problem (1) - (3), (6)
cannot have more than one solution, i.e. if problem (1) - (3), (6) has a solution, then it
is unique.

Now consider the following operator in space E5
T

Φ(u, a) = {Φ1(u, a),Φ2(u, a)} ,

where

Φ1(u, a) = ũ(x, t) =
∞∑
k=0

ũk(t)Xk(x),Φ2(u, a) = ã(t),

and ũ0(t), ũ2k−1(t), ũ2k(t) and ã(t) equal corresponding to the right side (17), (18) , (19)
and (23).

It is easy to see that

1 + βλ2k > βλ2k,
1

1 + βλ2k
<

1

βλ2k
,

√
α

1 + β
λk ≤ βk ≤

√
1 + α

β
λk,

√
β

1 + α

1

λk
≤ 1

βk
≤
√

1 + β

α

1

λk
,

Taking these relations into account, we find:

‖ũ0 (t)‖C[0,T ] ≤ |ϕ0|+ T |ψ0|+ T
√
T

(∫ T

0
|f0 (τ)|2 dτ

) 1
2

+ T 2 ‖a(t)‖C[0,T ] ‖u0(t)‖C[0,T ] ,

(24)( ∞∑
k=1

(λ5k ‖ũ2k−1(t)‖C[0,T ])
2

) 1
2

≤

≤ 2

( ∞∑
k=1

(λ5k |ϕ2k−1|)2
) 1

2

+ 2

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+
2

β

√
1 + β

α√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

 ,
(25)( ∞∑

k=1

(λ5k ‖ũ2k(t)‖C[0,T ])
2

) 1
2

≤

≤ 3

( ∞∑
k=1

(λ5k |ϕ2k|)2
) 1

2

+ 3

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k |)2
) 1

2

+
3

β

√
1 + β

α
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√T (∫ T

0

∞∑
k=1

(λ2k | f2k (τ) |)2dτ

) 1
2

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k(t)‖C[0,T ])
2

) 1
2

+

+
3(1 + 2α+ αβ)

β3

T ( ∞∑
k=1

(λ5k |ϕ2k−1|)2
) 1

2

+

(√
1 + β

α
+ T

)√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1|)2
) 1

2

+

+
1

β

√
1 + β

α

T√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+T 2 ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

+

+
6

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

 , (26)

‖ã(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

+4

( ∞∑
k=1

λ−2k

) 1
2

1 + α

β

( ∞∑
k=1

(λ5k |ϕ2k−1|)2
) 1

2

+

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+

+
1

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

+

+

( ∞∑
k=1

(λ2k ‖f2k (t)‖C[0,T ] |

) 1
2

+ ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2


 . (27)

Suppose that the data of problem (1) - (3), (6) satisfy the following conditions:
1.α > 0, β > 0, h(t) ∈ C2[0, T ] , h(t) 6= 0 (0 ≤ t ≤ T ).
2.ϕ(x) ∈ C4[0, 1], ϕ(5)(x) ∈ L2(0, 1), ϕ(1) = 0, ϕ′(0) = ϕ′(1),
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ϕ′′(1) = 0, ϕ′′′(0) = ϕ′′′(1), ϕ(4)(1) = 0.
3.ψ(x) ∈ C3[0, 1], ψ(4)(x) ∈ L2(0, 1), ψ(1) = 0, ψ′(0) = ψ′(1), ψ′′(1) = 0, ψ′′′(0) =
ψ′′′(1).
4.f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), f(1, t) = 0, fx(0, t) = fx(1, t) (0 ≤ t ≤
T ).

Then from (24)- (27) we find:

‖ũ(x, t)‖B5
2,T

= A1(T ) +B1(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T
, (28)

‖ã(t)‖C[0,T ] = A2(T ) +B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T
, (29)

where

A1(T ) = ‖ϕ(x)‖L2(0,1)
+ T ‖ψ(x)‖L2(0,1)

+ T
√
T ‖f(x, t)‖L2(DT ) +

√
2
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+

+

√
2(1 + β)

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

√
2(1 + β)

α
‖fxx(x, t)‖L2(DT )+

3√
2

∥∥∥ϕ(5)(x) + 4ϕ(3)(x)
∥∥∥
L2(0,1)

+

+
3√
2

√
1 + β

α

∥∥∥ψ(4)(x) + 3ψ(3)(x)
∥∥∥
L2(0,1)

+
3

β

√
T (1 + β)

2α
‖fxx(x, t) + 2fx(x, t)‖L2(DT ) +

+
3(1 + 2α+ αβ)

β3

(
T√
2

∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+

(√
1 + β

α
+ T

)√
1 + β

2α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
T

β

√
T (1 + β)

2α
‖fxx(x, t)‖L2(DT )

)
+

6

β

√
T (1 + β)

α
‖fxx(x, t)‖L2(DT ) ,

B1(T ) = T 2 +
11T

β

√
1 + β

α

(
1 +

3(1 + 2α+ αβ)

β3
T

)
,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

+2
√

2

( ∞∑
k=1

λ−2k

) 1
2
{

1 + α

β

[∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+

√
1 + β

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
1

β

√
T (1 + β)

α
‖fxx(x, t)‖L2(DT )

]
+
∥∥∥‖fxx(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

}
,

B2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2 1 + α

β2

√
1 + β

α
T + 1

 .

From inequalities (27), (28) we conclude:
‖ũ(x, t)‖B5

2,T
+ ‖ã(t)‖C[0,T ] ≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
, (30)
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where

A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

So, the following theorem is proved.

Theorem 2. Let conditions 1-4 be satisfied and

B(T )(A(T ) + 2)2 < 1. (31)

Then problem (1)-(3), (6) has a unique solution in the ball K = KR(|| z ||E5
T
≤ R =

A(T ) + 2) from E5
T .

Proof. In the space E5
T , consider the equation

z = $z, (32)

where z = {u, a}, the components $i(u, a) (i = 1, 2) of the operator $(u, a) are defined by
the right-hand sides of equations (20), (23), respectively.

Consider an operator $(u, a) in a ball K = KR of E5
T . Similarly, from (30) we obtain

that for any z, z1, z2 ∈ KR the following estimates are valid:

‖$z‖E5
T
≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
≤ A(T ) +B(T )(A(T ) + 2)2, (33)

‖$z1 − $z2‖E5
T
≤ B(T )R

(
‖a1(t)− a2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B5

2,T

)
. (34)

Then, taking into account (31), it follows from estimates (33), (34) that the operator $
acts in the ball K = KR and is contracting. Therefore, in the ball K = KR, the operator
$ has a unique fixed point {u, a}, which is a solution to equation (32), that is, is the only
solution in the ball K = KR to system (20), (23).

A function u(x, t) as an element of spaceB5
2,T , has continuous derivatives u(x, t), ux(x, t),

uxx(x, t) , uxxx(x, t), uxxxx(x, t) in DT .

Similarly to [10], one can show that ut(x, t), utt(x, t) , utt(x, t) , uttx(x, t), uttxx(x, t) are
continuous in DT .

It is easy to check that equation (2) and conditions (2), (3) and (6) are satisfied in the
usual sense. Hence, {u(x, t), a(t)} is a solution to problem (1) - (3), (6), and by virtue of
the corollary to Lemma 1, it is unique. J

Using Theorem 1, we prove the following

Theorem 3. Let all conditions of Theorem 2 be satisfied and the conditions of consistency

ϕ(0) = h(0) , ψ(0) = h′0).

Then problem (1) - (4) has a unique classical solution in the ball K = KR(|| z ||E5
T
≤

R = A(T ) + 2) from E5
T .
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