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An Application of Generalized Distribution Series on
Certain Classes of Univalent Functions
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Abstract. The purpose of the present paper is to obtain some sufficient conditions for generalized
distribution series belonging to the classes S*(«, 8,7), K(«a, 8,7) and inclusion relation of these
subclasses by R7 (A, B). Finally, we obtain some necessary and sufficient conditions of an integral
operator associated with the generalized distribution series.
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1. Introduction

Let A denote the class of functions f of the form
o0
f2)=z2+) an2" (1)
n=2

which are analytic in the open unit disk U = {z: z € C and |z| < 1}. As usual, by S
we shall represent the class of all functions in A which are univalent in U and further, we
denote 7 be the subclass of S consisting of functions of the form

o0

f(z)=2= lanlo". (2)

n=2

The convolution (or Hadamard product) of two series f(z) = >..° jan2™ and g(z) =
Yoo o bn2™ is defined as the power series

() =D anbu".
n=0
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A function f € A is said to be starlike of order @ (0 < aw < 1), if and only if

m(?&?)>m (z € U).

This function class is denoted by S*(a). We also write S*(0) =: §*, where §* denotes the
class of functions f € A that f(U) is starlike with respect to the origin.
A function f € A is said to be convex of order a (0 < o < 1), if and only if

Zf”(Z))
D4 (1 + >a, (ze€l).
) =<t
This class is denoted by IC(«). Further, K = KC(0), the well-known standard class of convex
functions.

It is an established fact that f € K(a) <= zf" € §*(«).

We recall the class $*(a, 3, 7) defined and studied by Kulkarni [10].
Let 8*(a, B,7) the subclass of T consisting of functions which satisfy the condition

f(z) -1
2(f'(z) —a) = (f'(2) = 1)
Where0<5§1,0§a<%and%§fy§1
Recently, some conditions of hypergeometric functions on the class S*(«, 3,7) have
been studied by Joshi et al. [9].
Now, we define a new class K(«, [3,7) be the subclass of 7 consisting of functions which
satisfy the condition

< B, (zel). (3)

2f"(z2) + f'(z) -1
2y(2f"(2) + ['(2) — ) = (2f"(2) + ['(2) = 1)

WhereO<B§1,0§a<%and%§7§l.
By using (3) and (4) we note that

f(z) € K(a, B,7) & 2f'(2) € S*(a, B,7).

A function f € A is said to be in the class f € R7(A,B) (1 € C\{0}, -1 < B < A<1),
if it satisfies the inequality

<B, (zel). (4)

f'(z) -1

A-Br-Bre -1 " FeY

The class R7 (A, B) was introduced earlier by Dixit and Pal [7].

The applications of hypergeometric functions ([9], [20]), confluent hypergeometric func-
tions [5], generalized hypergeometric functions [8], Wright function [17], Fox-Wright func-
tion [6], generalized Bessel functions ([4], [15]) are interesting topics of research in Geomet-
ric Function Theory. In 2014, Porwal [13] (see also [2], [11]) introduced Poisson distribution
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series and obtain necessary and sufficient conditions for certain classes of univalent func-
tions and co-relates probability density function with Geometric Function Theory. After
the appearance of this paper several researchers introduced hypergeometric distribution
series [1], confluent hypergeometric distribution series [16], Binomial distribution series
[12], Mittag-Leffler type Poisson distribution series [3] and obtain some interesting prop-
erties of various classes of univalent functions. Recently Porwal [14] introduced generalized
distribution series and obtain some necessary and sufficient conditions belonging to the
certain classes of univalent functions. Now, we recall the definition of generalized distri-
bution. Let the series > - ¢,, where ¢, > 0,Vn € N is convergent and its sum is denoted
by S, i.e.

S=3 1 )
n=0

Now, we introduce the generalized discrete probability distribution whose probability mass
function is

p(n>:§7 n:071727 (6)

Obviously p(n) is a probability mass function because p(n) >0 and ) p, = 1.
Now, we introduce the series

b(x) = 3 toa™, (7)
n=0

From (5) it is easy to see that the series given by (7) is convergent for |x| < 1 and for
x =1 it is also convergent.

Now, we introduce a power series whose coefficients are probabilities of the generalized
distribution

n=2
Further, we define the function

o0
tTL—l n

TKy(z) =2z — 57 (9)

n=2

Next, we introduce the convolution operator T'Ky(f, z) for functions f of the form (2) as
follows

THy(f,2) = Ko(2) () = 2= 3 Jan] 512" (10)
n=2

In the present paper, motivated with the above mentioned work, we obtain necessary and
sufficient conditions for generalized distribution series belonging to the classes K(«, 3,7),
S*(«, B,7) and inclusion relation of these subclasses by R™(A, B).
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2. Main Results

To establish our main results we shall require the following lemmas.

Lemma 1. ([9]) A function f € A and of the form (1) belongs to the class S*(a, 8,7) if

o0

Sl + B(1 = 29)]|an] < 267(1 - ). (11)
n=2

Our next lemma is a direct consequences of definition (4).

Lemma 2. A function f € A and of the form (1) belongs to the class K(«, 5,7) if

> n?[1+B(1—29)]an| < 28v(1 - a).

n=2

Lemma 3. [7] A function f € R™(A, B) is of form (1), then
lan| < (A—B)’Tn|, n € N\{1}. (12)

The bound given in (12) is sharp.

Theorem 1. If f € A is of the form (1) and the inequality

(1+8(1—=27)) [¢"(1) +3¢'(1) + (6(1) = ¢(0))| < 2B8y(1 —@)S (13)
is satisfied, then Ky(z) is of the form (8) is in the class K(o, B3,7).

Proof. To prove that K4(z) € K(c, ,7)from Lemma 2 it suffices to prove that

(1—a).

Zn 14+ 6(1—2 )] 5

Now

Zn 1+ B(1—27)] Sl
1 1-29) |
ZJW[Zn]tM

n=2

:Mi[(nf1)(n—2)+3(n—1)+1]fn71

S n=2
_ 1481 —29)
N S

WE

[n(n — 1)t, + 3nt,, + t,]

n=1
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_ Hﬁ(;—%y) ¢ (1) +3¢'(1) + (¢(1) — ¢(0))}
< 26y(1 - a).

This completes the proof of Theorem 1. <«
Theorem 2. If f € A is of the form (1) and the inequality

[1+ 801 = 27)] [¢'(1) + (6(1) = 6(0))] < 28+(1 = @)$. (14)
is satisfied, then Ky(z) is of the form (8) is in the class S*(«, 3,7).

Proof. To prove that K4(z) € S*(«, 8,7) from Lemma 1 it suffices to prove that

Soalt+ 801 - 2] 5t < 264(1 - a).
n=2

Now
> nl1 + (1 - 27)]
2l S
:Mé‘””[;w—lm b
4801 =29 &
- fﬂd [ty + t)
= LEAL=2054) 4 (o) - 0(0))]
<2B87(1 - o).

Thus the proof of Theorem 2 is established. «

Remark 1. The conditions (13) and (14) are also necessary for the distribution series
TKy(z) defined by (9).

Theorem 3. If f € R™(A, B) is of the form (2) and the operator TKy(f,z) defined by
(10) is in the class K(a, B,7), if and only if

(A—B)1 +Sﬁ(1 — 29)]|7| [¢,(1) 4 (o(1) — qb(o))} < 28y(1 - a). (15)

Proof. To prove TKy(f,z) € K(a, 3,7), from Lemma 2, it suffices to prove that

P =Y n?[1+ (1 —27)llan| < 28+(1 - ).

n=2
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Since f € R™(A, B) then by using Lemma 3 we have

o < =,
Hence
Pl SM_SBNT’ ;n[l + B(l - 27)]25”*1
_(A=B)[1+B(1 =27 |
_ - [nz;(n — 1)+ 1] th-
_(A-B)1+ 81 -29)]I7| -
! Z nty, + t,)
_(A-B) +SB(1 —29)]|7| {d) (1) + (6(01) — 6(0)
< 267(1 - a).

Thus the proof of Theorem 3 is established. «

Theorem 4. If f € R™(A, B) is of the form (2) and the operator TKy(f,z) defined by
(10) is in the class S*(«, B,7), if and only if

(A= B)[1+B(1 = 29)]|7|
S

Proof. The proof of above theorem is similar to that of Theorem 3. Therefore we omit
the details involved. «

[¢(1) = ¢(0)] < 28v(1 — ). (16)

3. An Integral Operator

In this section, we introduce an integral operator T'Gy(z) as follows

: TK,
TGy(z) = /0 t¢(t)dt, (17)

and obtain a necessary and sufficient condition for TG4 (z) belonging to the classes S*(«, 3,7)
and K(a, 3,7) .

Theorem 5. If TKy(z) defined by (10), then TGy(z) defined by (17) is in the class
K(a, B,7), if and only if (14) satisfies.
Proof. Since

[e.o]

tn n
TGy(z) =2z — Z nSl

n=2
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by Lemma 2, we have to prove that

Zn 1+51—2)] (1—a).

Now

S n?f1+ 81 - 29))

n=2
Z 1+ B(1 = 27)]tn
[1 B(1—29)] &
S ;[mﬂ)—lm
_ [14‘/8(;’_2'7)];[”_‘_1]75”
= AL 2005 4) + fo(a) - o(0)
<28v(1 - o).

This completes the proof of Theorem 5. <«

Theorem 6. If TKy(z) defined by (10), then TGy(z) defined by (17) is in the class
S*(a,8,7), if and only if

LHB0= 20 1500) - 6(0)] < 264(1 - ).

satisfies.

Proof. The proof of above theorem is much akin to that of Theorem 5. Therefore we
omit the details involved. <«
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