Caspian Journal of Applied Mathematics, Ecology and Economics V. 8, No 2, 2020, December ISSN 1560-4055

An Application of Generalized Distribution Series on Certain Classes of Univalent Functions

Saurabh Porwal*, G. Murugusundaramoorthy

Abstract. The purpose of the present paper is to obtain some sufficient conditions for generalized distribution series belonging to the classes $S^*(\alpha, \beta, \gamma)$, $\mathcal{K}(\alpha, \beta, \gamma)$ and inclusion relation of these subclasses by $\Re^{\tau}(A, B)$. Finally, we obtain some necessary and sufficient conditions of an integral operator associated with the generalized distribution series.

Key Words and Phrases: generalized distribution, Analytic, univalent functions, convex function and starlike functions.

2010 Mathematics Subject Classifications: 30C45

1. Introduction

Let \mathcal{A} denote the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in C \text{ and } |z| < 1\}$. As usual, by \mathcal{S} we shall represent the class of all functions in \mathcal{A} which are univalent in \mathbb{U} and further, we denote \mathcal{T} be the subclass of \mathcal{S} consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n.$$
(2)

The convolution (or Hadamard product) of two series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined as the power series

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

^{*}Corresponding author.

A function $f \in \mathcal{A}$ is said to be starlike of order α ($0 \le \alpha < 1$), if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad (z \in \mathbb{U}).$$

This function class is denoted by $\mathcal{S}^*(\alpha)$. We also write $\mathcal{S}^*(0) =: \mathcal{S}^*$, where \mathcal{S}^* denotes the class of functions $f \in \mathcal{A}$ that $f(\mathbb{U})$ is starlike with respect to the origin.

A function $f \in \mathcal{A}$ is said to be convex of order α ($0 \le \alpha < 1$), if and only if

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \quad (z \in \mathbb{U}).$$

This class is denoted by $\mathcal{K}(\alpha)$. Further, $\mathcal{K} = \mathcal{K}(0)$, the well-known standard class of convex functions.

It is an established fact that $f \in \mathcal{K}(\alpha) \iff zf' \in \mathcal{S}^*(\alpha)$.

We recall the class $\mathcal{S}^*(\alpha, \beta, \gamma)$ defined and studied by Kulkarni [10].

Let $S^*(\alpha, \beta, \gamma)$ the subclass of \mathcal{T} consisting of functions which satisfy the condition

$$\left| \frac{f'(z) - 1}{2\gamma(f'(z) - \alpha) - (f'(z) - 1)} \right| < \beta, \quad (z \in \mathbb{U}).$$
 (3)

where $0 < \beta \le 1, 0 \le \alpha < \frac{1}{2\gamma}$ and $\frac{1}{2} \le \gamma \le 1$ Recently, some conditions of hypergeometric functions on the class $\mathcal{S}^*(\alpha, \beta, \gamma)$ have been studied by Joshi et al. [9].

Now, we define a new class $\mathcal{K}(\alpha, \beta, \gamma)$ be the subclass of \mathcal{T} consisting of functions which satisfy the condition

$$\left| \frac{zf''(z) + f'(z) - 1}{2\gamma(zf''(z) + f'(z) - \alpha) - (zf''(z) + f'(z) - 1)} \right| < \beta, \quad (z \in \mathbb{U}).$$
 (4)

where $0 < \beta \le 1, 0 \le \alpha < \frac{1}{2\gamma}$ and $\frac{1}{2} \le \gamma \le 1$. By using (3) and (4) we note that

$$f(z) \in \mathcal{K}(\alpha, \beta, \gamma) \Leftrightarrow z f'(z) \in \mathcal{S}^*(\alpha, \beta, \gamma).$$

A function $f \in \mathcal{A}$ is said to be in the class $f \in \Re^{\tau}(A, B)$ $(\tau \in \mathbb{C} \setminus \{0\}, -1 \leq B < A \leq 1)$, if it satisfies the inequality

$$\left| \frac{f'(z) - 1}{(A - B)\tau - B[f'(z) - 1]} \right| < 1, \quad (z \in \mathbb{U}).$$

The class $\Re^{\tau}(A, B)$ was introduced earlier by Dixit and Pal [7].

The applications of hypergeometric functions ([9], [20]), confluent hypergeometric functions [5], generalized hypergeometric functions [8], Wright function [17], Fox-Wright function [6], generalized Bessel functions ([4], [15]) are interesting topics of research in Geometric Function Theory. In 2014, Porwal [13] (see also [2], [11]) introduced Poisson distribution series and obtain necessary and sufficient conditions for certain classes of univalent functions and co-relates probability density function with Geometric Function Theory. After the appearance of this paper several researchers introduced hypergeometric distribution series [1], confluent hypergeometric distribution series [16], Binomial distribution series [12], Mittag-Leffler type Poisson distribution series [3] and obtain some interesting properties of various classes of univalent functions. Recently Porwal [14] introduced generalized distribution series and obtain some necessary and sufficient conditions belonging to the certain classes of univalent functions. Now, we recall the definition of generalized distribution. Let the series $\sum_{n=0}^{\infty} t_n$, where $t_n \geq 0$, $\forall n \in N$ is convergent and its sum is denoted by S, i.e.

$$S = \sum_{n=0}^{\infty} t_n. \tag{5}$$

Now, we introduce the generalized discrete probability distribution whose probability mass function is

$$p(n) = \frac{t_n}{S}, \quad n = 0, 1, 2, \dots$$
 (6)

Obviously p(n) is a probability mass function because $p(n) \ge 0$ and $\sum_n p_n = 1$.

Now, we introduce the series

$$\phi(x) = \sum_{n=0}^{\infty} t_n x^n. \tag{7}$$

From (5) it is easy to see that the series given by (7) is convergent for |x| < 1 and for x = 1 it is also convergent.

Now, we introduce a power series whose coefficients are probabilities of the generalized distribution

$$K_{\phi}(z) = z + \sum_{n=2}^{\infty} \frac{t_{n-1}}{S} z^{n}.$$
 (8)

Further, we define the function

$$TK_{\phi}(z) = z - \sum_{n=2}^{\infty} \frac{t_{n-1}}{S} z^n.$$
 (9)

Next, we introduce the convolution operator $TK_{\phi}(f,z)$ for functions f of the form (2) as follows

$$TK_{\phi}(f,z) = K_{\phi}(z) * f(z) = z - \sum_{n=2}^{\infty} |a_n| \frac{t_{n-1}}{S} z^n.$$
 (10)

In the present paper, motivated with the above mentioned work, we obtain necessary and sufficient conditions for generalized distribution series belonging to the classes $\mathcal{K}(\alpha, \beta, \gamma)$, $\mathcal{S}^*(\alpha, \beta, \gamma)$ and inclusion relation of these subclasses by $\Re^{\tau}(A, B)$.

2. Main Results

To establish our main results we shall require the following lemmas.

Lemma 1. ([9]) A function $f \in \mathcal{A}$ and of the form (1) belongs to the class $\mathcal{S}^*(\alpha, \beta, \gamma)$ if

$$\sum_{n=2}^{\infty} n[1 + \beta(1 - 2\gamma)]|a_n| \le 2\beta\gamma(1 - \alpha). \tag{11}$$

Our next lemma is a direct consequences of definition (4).

Lemma 2. A function $f \in \mathcal{A}$ and of the form (1) belongs to the class $\mathcal{K}(\alpha, \beta, \gamma)$ if

$$\sum_{n=2}^{\infty} n^2 [1 + \beta(1 - 2\gamma)] |a_n| \le 2\beta \gamma (1 - \alpha).$$

Lemma 3. [7] A function $f \in \Re^{\tau}(A, B)$ is of form (1), then

$$|a_n| \le (A-B)\frac{|\tau|}{n}, \quad n \in \mathbb{N} \setminus \{1\}.$$
 (12)

The bound given in (12) is sharp.

Theorem 1. If $f \in A$ is of the form (1) and the inequality

$$(1 + \beta(1 - 2\gamma)) \left[\phi''(1) + 3\phi'(1) + (\phi(1) - \phi(0)) \right] \le 2\beta\gamma(1 - \alpha)S$$
 (13)

is satisfied, then $K_{\phi}(z)$ is of the form (8) is in the class $\mathcal{K}(\alpha, \beta, \gamma)$.

Proof. To prove that $K_{\phi}(z) \in \mathcal{K}(\alpha, \beta, \gamma)$ from Lemma 2 it suffices to prove that

$$\sum_{n=2}^{\infty} n^2 [1 + \beta(1 - 2\gamma)] \frac{t_{n-1}}{S} \le 2\beta \gamma (1 - \alpha).$$

Now

$$\sum_{n=2}^{\infty} n^2 [1 + \beta(1 - 2\gamma)] \frac{t_{n-1}}{S}$$

$$= \frac{1 + \beta(1 - 2\gamma)}{S} \left[\sum_{n=2}^{\infty} n^2 \right] t_{n-1}$$

$$= \frac{1 + \beta(1 - 2\gamma)}{S} \sum_{n=2}^{\infty} [(n-1)(n-2) + 3(n-1) + 1] t_{n-1}$$

$$= \frac{1 + \beta(1 - 2\gamma)}{S} \sum_{n=1}^{\infty} [n(n-1)t_n + 3nt_n + t_n]$$

$$= \frac{1 + \beta(1 - 2\gamma)}{S} \left[\phi''(1) + 3\phi'(1) + (\phi(1) - \phi(0)) \right]$$

$$\leq 2\beta\gamma(1 - \alpha).$$

This completes the proof of Theorem 1. ◀

Theorem 2. If $f \in A$ is of the form (1) and the inequality

$$[1 + \beta(1 - 2\gamma)] \left[\phi'(1) + (\phi(1) - \phi(0)) \right] \le 2\beta\gamma(1 - \alpha)S.$$
 (14)

is satisfied, then $K_{\phi}(z)$ is of the form (8) is in the class $S^*(\alpha, \beta, \gamma)$.

Proof. To prove that $K_{\phi}(z) \in \mathcal{S}^*(\alpha, \beta, \gamma)$ from Lemma 1 it suffices to prove that

$$\sum_{n=2}^{\infty} n[1 + \beta(1 - 2\gamma)] \frac{t_{n-1}}{S} \le 2\beta\gamma(1 - \alpha).$$

Now

$$\sum_{n=2}^{\infty} n[1 + \beta(1 - 2\gamma)] \frac{t_{n-1}}{S}$$

$$= \frac{[1 + \beta(1 - 2\gamma)]}{S} \left[\sum_{n=2}^{\infty} (n-1) + 1 \right] t_{n-1}$$

$$= \frac{[1 + \beta(1 - 2\gamma)]}{S} \sum_{n=1}^{\infty} [nt_n + t_n]$$

$$= \frac{[1 + \beta(1 - 2\gamma)]}{S} \left[\phi'(1) + (\phi(1) - \phi(0)) \right]$$

$$\leq 2\beta\gamma(1 - \alpha).$$

Thus the proof of Theorem 2 is established. ◀

Remark 1. The conditions (13) and (14) are also necessary for the distribution series $TK_{\phi}(z)$ defined by (9).

Theorem 3. If $f \in R^{\tau}(A, B)$ is of the form (2) and the operator $TK_{\phi}(f, z)$ defined by (10) is in the class $K(\alpha, \beta, \gamma)$, if and only if

$$\frac{(A-B)[1+\beta(1-2\gamma)]|\tau|}{S} \left[\phi'(1) + (\phi(1) - \phi(0))\right] \le 2\beta\gamma(1-\alpha). \tag{15}$$

Proof. To prove $TK_{\phi}(f,z) \in \mathcal{K}(\alpha,\beta,\gamma)$, from Lemma 2, it suffices to prove that

$$P_1 = \sum_{n=2}^{\infty} n^2 [1 + \beta(1 - 2\gamma)] |a_n| \le 2\beta \gamma (1 - \alpha).$$

Since $f \in R^{\tau}(A, B)$ then by using Lemma 3 we have

$$|a_n| \le \frac{(A-B)|\tau|}{n}.$$

Hence

$$P_{1} \leq \frac{(A-B)|\tau|}{S} \sum_{n=2}^{\infty} n[1+\beta(1-2\gamma)]t_{n-1}$$

$$= \frac{(A-B)[1+\beta(1-2\gamma)]|\tau|}{S} \left[\sum_{n=2}^{\infty} (n-1)+1\right] t_{n-1}$$

$$= \frac{(A-B)[1+\beta(1-2\gamma)]|\tau|}{S} \sum_{n=1}^{\infty} [nt_{n}+t_{n}]$$

$$= \frac{(A-B)[1+\beta(1-2\gamma)]|\tau|}{S} \left[\phi'(1)+(\phi(1)-\phi(0))\right]$$

$$\leq 2\beta\gamma(1-\alpha).$$

Thus the proof of Theorem 3 is established. ◀

Theorem 4. If $f \in R^{\tau}(A, B)$ is of the form (2) and the operator $TK_{\phi}(f, z)$ defined by (10) is in the class $S^*(\alpha, \beta, \gamma)$, if and only if

$$\frac{(A-B)[1+\beta(1-2\gamma)]|\tau|}{S} [\phi(1)-\phi(0)] \le 2\beta\gamma(1-\alpha). \tag{16}$$

Proof. The proof of above theorem is similar to that of Theorem 3. Therefore we omit the details involved. \triangleleft

3. An Integral Operator

In this section, we introduce an integral operator $TG_{\phi}(z)$ as follows

$$TG_{\phi}(z) = \int_0^z \frac{TK_{\phi(t)}}{t} dt, \tag{17}$$

and obtain a necessary and sufficient condition for $TG_{\phi}(z)$ belonging to the classes $\mathcal{S}^*(\alpha, \beta, \gamma)$ and $\mathcal{K}(\alpha, \beta, \gamma)$.

Theorem 5. If $TK_{\phi}(z)$ defined by (10), then $TG_{\phi}(z)$ defined by (17) is in the class $\mathcal{K}(\alpha, \beta, \gamma)$, if and only if (14) satisfies.

Proof. Since

$$TG_{\phi}(z) = z - \sum_{n=2}^{\infty} \frac{t_{n-1}}{nS} z^n$$

by Lemma 2, we have to prove that

$$\sum_{n=2}^{\infty} n^2 [1 + \beta(1 - 2\gamma)] \frac{t_{n-1}}{nS} \le 2\beta\gamma(1 - \alpha).$$

Now

$$\begin{split} &\sum_{n=2}^{\infty} n^2 [1 + \beta (1 - 2\gamma)] \frac{t_{n-1}}{nS} \\ &= \frac{1}{S} \sum_{n=2}^{\infty} n [1 + \beta (1 - 2\gamma)] t_{n-1} \\ &= \frac{[1 + \beta (1 - 2\gamma)]}{S} \sum_{n=1}^{\infty} [(n+1) - 1] t_n \\ &= \frac{[1 + \beta (1 - 2\gamma)]}{S} \sum_{n=1}^{\infty} [n+1] t_n \\ &= \frac{[1 + \beta (1 - 2\gamma)]}{S} \left[\phi'(1) + [\phi(1) - \phi(0)] \right] \\ &\leq 2\beta \gamma (1 - \alpha). \end{split}$$

This completes the proof of Theorem 5. \triangleleft

Theorem 6. If $TK_{\phi}(z)$ defined by (10), then $TG_{\phi}(z)$ defined by (17) is in the class $S^*(\alpha, \beta, \gamma)$, if and only if

$$\frac{[1+\beta(1-2\gamma)]}{S} \left[\phi(1) - \phi(0)\right] \le 2\beta\gamma(1-\alpha).$$

satisfies.

Proof. The proof of above theorem is much akin to that of Theorem 5. Therefore we omit the details involved. \triangleleft

References

- [1] M.S. Ahmad, Q. Mehmood, W. Nazeer, A.U. Haq, An application of a Hypergeometric distribution series on certain analytic functions, Sci. Int.(Lahore), 27(4), 2015, 2989-2992.
- [2] S. Altınkaya, S. Yalçın, Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12(5), 2018, 1315–1319.

- [3] Divya Bajpai, A study of univalent functions associated with distortion series and q-calculus, M.Phil. Dissertation, CSJM University, Kanpur, India, 2016.
- [4] A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010.
- [5] N. Bohra, V. Ravichandran, On confluent hypergeometric functions and generalized Bessel functions, Anal. Math., 43(4), 2017, 533–545.
- [6] V.B.L. Chaurasia, H.S. Parihar, Certain sufficiency conditions on Fox-Wright functions, Demonstratio Math., 41(4), 2008, 813–822.
- [7] K.K. Dixit, S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure. Appl. Math., 26(9), 1995, 889–896.
- [8] A. Gangadharan, T.N. Shanmugam, H.M. Srivastava, Generalized hypergeometric functions associated with k-Uniformly convex functions, Comput. Math. Appl., 44, 2002, 1515-1526.
- [9] S.B. Joshi, H.H. Pawar, T. Bulboaca, A subclass of analytic functions associated with hypergeometric functions, Sahand Comm. Math. Anal., 14(1), 2019, 199-210.
- [10] S.R. Kulkarni, Some problems connected with univalent functions, Ph.D. Thesis, Shivaji University, Kolhapur, India, 1981.
- [11] G. Murugusundaramoorthy, K. Vijaya, S. Porwal, Some inclusion results of certain subclasses of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat., 45(4), 2016, 1101–1107.
- [12] W. Nazeer, Q. Mehmood, S.M. Kang, A.U. Haq, An application of a Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26(1), 2019, 11-17.
- [13] Saurabh Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., **2014**, 2014, Art. ID 984135, 1-3.
- [14] Saurabh Porwal, Generalized distribution and its geometric properties associated with univalent functions, J. Complex Anal., 2018, Art. ID 8654506, 5 pp.
- [15] Saurabh Porwal, Moin Ahmad, Some sufficient condition for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43, 2015, 163-172.
- [16] Saurabh Porwal, Shivam Kumar, Confluent hypergeometric distribution and its applications on certain classes of univalent functions, Afr. Mat., 28, 2017, 1-8.
- [17] R.K. Raina, On univalent and starlike Wright's hypergeometric functions, Rend. Sem. Mat. Univ. Padova 95, 1996, 11–22.

- [18] M.S. Robertson, On the theory of univalent functions, Ann. Math., 37, 1936, 374-408.
- [19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., **51**, 1975, 109-116.
- [20] A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 5(4), 2004, Article 83, 10 pp.

Saurabh Porwal

 $\label{lem:condition} \textit{Department of Mathematics, Ram Sahai Government Degree College, Bairi Shivrajpur-Kanpur-209205, (U.P.), India}$

 $E\text{-}mail:\ saurabhjcb@rediffmail.com$

G. Murugusundaramoorthy

School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India E-mail: gmsmoorthy@yahoo.com

Received 03 July 2020 Accepted 23 December 2020