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Integral Inequalities for Function Spaces with a Finite

Collection of Generalized Smoothness

M.G. Aliyev

Abstract. In this paper the function space
n⋂

k=0

Λ
〈mk

;Nk〉
pk,θk

(G,ϕk) is defined. This function spaces

is the generalization of classical Sobolev-Slobodetskii and Nikolskii-Besov spaces. We established
sufficient conditions under which the embedding theorems for these spaces are proved. We reduce
the analog of integral representations of functions given by S.L. Sobolev for functions form the

space
n⋂

k=0

Λ
〈mk

;Nk〉
pk,θk

(G,ϕk) .
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1. Introduction

The theory of embedding of spaces of differentiable functions of several variables de-
veloped as a new direction of mathematics in the 30s of the 20th century as a result of the
works of S.L. Sobolev, which is presented in detail in monograph [5]. This theory studies
important connections and relations of differential properties of functions in various met-
rics. In addition to its independent interest from the point of view of function theory, it
also has numerous and effective applications in the theory of partial differential equations.
Such applications were given by S.L. Sobolev in [5] (see, also [3]). S.L. Sobolev studied

isotropic spaces W
(l)
p (G) of functions f defined on a domain G ⊂ Rn with the norm

‖f‖
W

(l)
p (G)

=
∑

|α|≤l

‖Dαf‖Lp(G) ,

where l is a non-negative integer and p ≥ 1. S.L. Sobolev proved embedding theorems for

function space W
(l)
p (G) in domains of n-dimensional Euclidean spaces. Namely, theorems

on the summability in power q of derivatives Dβf with respect to a domain G or manifolds
of lower dimension belonging to G .
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In subsequent years, the theory of embedding developed intensively in various direc-
tions and received new interesting and important applications. Among these works, one
can note the works of S.M. Nikolskii, O.V. Besov, V.P. Ilin, N. Aronszajn, V.M. Babich,
L.N. Slobodetskii, A.S. Jafarov, G. Freud, D. Kralik, V.I. Burenkov, A.J. Jabrailov and
others. For more details we refer the readers to [1] and [4].

S.L. Sobolev established embedding theorems using integral representations of func-
tions in terms of their weak derivatives. This method of integral representations was
developed in the works of V.P. Ilin and, in particular, was carried over to cases of repre-
sentation through differences. One of the significant advantages of the method of integral
representations is that the representation of a function at a given point is constructed
from the values of this function at the points of a bounded cone with vertex at this point.
This creates an opportunity to study function spaces of functions defined on an open set
of a sufficiently general form.

The remainder of the paper is structured as follows. Section 2 contains some prelimi-
naries along with the standard ingredients used in the proofs. In Section 3 we reduce the
class of domains satisfying special horn conditions. Our principal assertions, concerning
the embedding of Hölder spaces with generalized smoothness to Lebesgue spaces are for-
mulated and proved in Section 4. We establish sufficient conditions on a domain G ⊂ Rn

for the validity of embedding theorem.

2. Preliminaries

Let Rn be the n− dimensional Euclidean space of points x = (x1, ..., xn) , and let G be
a Lebesgue measurable set of Rn. Suppose f : G → Rn is a Lebesgue measurable function
and let 1 ≤ p < ∞. Throughout this paper we will assume that all sets and functions are
Lebesgue measurable.

Definition 1. The Lebesgue space Lp (G) is the class of all measurable functions f defined
on G such that

‖f‖Lp(G)
= ‖f‖p,G =

(∫

G

|f (x)|p dx

) 1
p

. (1)

In the case p = ∞, the space L∞ (G) will be defined as all measurable functions such that

‖f‖∞,G = vrai sup
x∈G

|f(x)| . (2)

Let
m = (m1, ..,mn)
N = (N1, .., Nn)

}

(3)

be the vectors with integer non-negative components.

The mixed derivative of order |m| = m1 + ...mn is defined by

Dmf (x) = Dl1
m1 ...Dn

mnf (x1, .., xn) =
∂|m|

∂x1m1 ...∂xnmn
. (4)
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We denote by

∆N (t) f (x) = ∆1
N1 (t1) ...∆n

Nn (tn) f (x1, .., xn) (5)

the |N | = N1 + ...Nn-order finite mixed difference of a function f = f (x), corresponding
to mixed step of a vector t = (t1, ..tn). Here







∆k
Nk (tk) f (...xk...) = ∆k

1 (tk)
{
∆k

Nk−1 (tk) f (...xk...)
}

∆k
0 (tk) f (..., xk, ...) = f (..., xk, ...)

∆k
1 (tk) f (..., xk, ...) = f (..., xk + tk, ...)− f (..., xk, ...)

(6)

Therefore

∆k
Nk (tk) f (..., xk, ...) (7)

Is the finite difference of a function f = f (x) of order Nk in the direction of variable xk
with step tk.We observe that in the domain G ⊂ En the expression

∆N (t,G) f (x) = ∆N (t) f (x)∆N (t,G) f (x) = ∆N (t) f (x) , (8)

is the mixed difference of a function f = f (x). In this case we suppose that the mixed
difference is constructed from the vertices of a polyhedron that lies entirely in the domain
G ⊂ En. Otherwise, we assume that

∆N (t,G) f (x) = 0. (9)

Let ϕ = ϕ (t) = (ϕ1 (t1) , ..., ϕn (tk)) be a vector-function such that

ϕj = ϕj (tj) > 0, if tj 6= 0 and ϕj (tj) ↓ 0 for t → 0 and for all j = 1, 2, .., n.

Let 1 ≤ θ < ∞ and let dt
t
=
∏

j∈En

dtj
tj
. We consider the following semi-norm

‖f‖
Λ
〈m,n〉
p,θ

(G,ϕ) =







∫

E|En|

∥
∥
∥
∥
∥

∆N
(

t
N
;G
)
Dmf

∏

j∈En
ϕj (tj)

∥
∥
∥
∥
∥

θ

p,G

dt

t







1
θ

. (10)

For θ = ∞, we suppose that

‖f‖
Λ
〈m,n〉
p,∞ (G,ϕ)

= vrai sup
t∈EN

∥
∥
∥
∥
∥

DN
(

t
N
, G
)

∏

j∈En
ϕj (tj)

∥
∥
∥
∥
∥
P,G

. (11)

Here En = sup p N is a support of a vector N = (N1, ...Nn) . In other words En is a set of
nonzero indices of the coordinates of vector N. Thus, En ⊂ {1, 2, ...n} = en.

Let us t
N

=
(

t1
N1

, ... tn
Nn

)

and we use the convention 0
0 = 0.

Therefore E|EN | =
{

t ∈ EN ; tj = 0
(

j ∈ en/En

)}

.

Let
mk =

(
mk

1, ..m
k
n

)

Nk =
(

Nk
1 , ..., N

k
n

)

}

(k = 0, 1, ..., n) (12)

be the vectors with integer non-negative components. Thus,
mk

j ≥ 0

Nk
j ≥ 0

}

for all
(
j = 1, n

)
and k = 0, n.
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Suppose that any vector-function from collection of (n+ 1) vector function ϕk = ϕk (t) =
(
ϕk
1

(
t1, ..., ϕ

k
n (tn)

))
satisfy following conditions:

ϕj = ϕj (tj) > 0 for tj 6= 0
ϕj (tj ↓ 0) for t → 0.

Definition 2. Let 1 ≤ pk ≤ θk ≤ ∞, and k = 0, ..., n . The space

n⋂

k=0

Λ
〈mk ;Nk〉
pk,θk

(G,ϕk) (13)

is defined as the closure of sufficiently smooth functions f = f (x) with compact support
on Rn by the norm

‖f‖ n⋂

k=0
Λ
〈mk;Nk〉
pkθk

(G;ϕk)
=

n∑

k=0

‖f‖
Λ
〈mk,Nk〉
pkθk

(G,ϕk)
< ∞. (14)

Remark 1. We observe that the space given by (13) in the case 1 ≤ pk ≤ θk ≤ ∞ (
k = 0, n ) is a generalization of the classical Sobolev-Slobodetskii space W r

p (G) . Also, in

the case 1 ≤ pk ≤ θk ≤ ∞ and sup pmk ⊆ sup pNk = ENk the space
n⋂

k=0
Λ
〈mk;Nk〉
pk,θk

(G,ϕk)

is a generalization of Nikolskii-Besov space Br
p,θ (G) (see, [2]).

3. The class of domains G ⊂ En

Let
a (υ) = (a1 (υ) , ..., an (υ)) a (υ) = (a1 (υ) , ..., an (υ)) (15)

be a differentiable vector-function in [0;h] such that

aj = aj (ν) > 0 , v ∈ (0;h]
lim

υ→0+
aj (υ) = 0

d
dυ
aj (υ) > 0 , v ∈ (0;h]







(16)

for all j = 1, n.
Let δ = (δ1, ..., δn) be a vector such that δj = ±1. We put

Rδ (a (h)) =
⋃

0<v≤h

{

y ∈ En; cj ≤
yj−δj
aj(υ)

≤ A∗
j

} (
j = 1, n

)
for all υ ∈ (0;h] . (??)

The set X +Rδ (a (h)) is called ≤ a (h) ≥-horn with vertices in x ∈ Rn.
Note that at each point x ∈ Rn, you can give2n-number of ”a (h) ”-horns with vertex

in x ∈ Rn.
If a vector δ = (δ1, ..., δn) be fixed, then at each point x ∈ Rn there is only single

≤ a (h) ≥-horn (for the same vector function (15) - (16) the vertex at this point x ∈ Rn).
A subdomain Ω ⊂ G is considered to be a subdomain satisfying the a (h)-horn condi-

tion, if there is a vector δ = (δ1, ..., δn) with δj = ±1 for which X +Rδ (a (h)) ⊂ G for all
x ∈ Ω .
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Definition 3. A subdomain G ⊂ En is called a domain satisfying ”a (h)- horn” condition,
if there exists a finite collection of subdomains

Ω1,Ω2, ...,Ωm ⊂ G,

with a (h)-horn condition such that
M⋃

k=1

Ωk = G.

By C (a (h)) we denote the class of domains G ⊂ En satisfying the a (h)-horn condition.

Definition 4. Let k = 1,M and let Ωk,ε = {y ∈ Ωk; ρ (y;G\Ωk) > ε} is a set of points
y ∈ Ωk spaced from G\Ωk at a distance greater than ε > 0. A set G ∈ C (a(h)) is called

a domain satisfying strong a (h)-horn condition, if in addition to condition
M⋃

k=1

Ωk = C,

there is also a covering
M⋃

k=1

Ωk,ε ⊇ G for some ε > 0.

By Cε (a (h)) we denote the class of domains G ⊂ Rn satisfying strong ”a (h) -horn”.
We observe that the notions of a domain G ⊂ Rn satisfying the a (h)-horn condition

and strong a (h)-horn conditions are introduced in [3] by O.V. Besov, respectively.

4. Main results

In this section of our paper we state and prove our principal assertions.

Theorem 1. Let 1 ≤ pk ≤ θk ≤ ∞ and let f ∈
n⋂

k=0
Λ
〈mk ;Nk〉
pk,θk

(
G,ϕk

) (
k = 0, n

)
. Suppose

that
mk =

(
mk

1, ...,m
k
n

)

Nk =
(

Nk
1 , ..., N

k
n

)

}

is the vectors with integer non-negative components such

that {k} ⊂ sup p
(
mk +Nk

)
(k = 1, n).

Let ϕk (t) =
(
ϕk
1 (t1) , ..., ϕ

k
n (tn)

)
be a vector-function satisfying condition ϕj (t) =

ϕj (tj) > 0 for tj 6= 0, and ϕj (tj) ↓ 0 for t → 0. Suppose that a domain G ⊂ En is satisfy
”a (h) -horn” condition, i.e. G ∈ C (a (h)) and a vector-function a (υ) = (a1 (υ) , ..., an (υ))
satisfy condition (16) for all υ ∈ [0, n)

Let υ = (υ1, ..., υn) be a vector with integer-nonnegative components satisfy matching

condition with respect to the vectors
mk =

(
mk

1, ...,m
k
n

)

Nk =
(

Nk
1 , ..., N

k
n

)

}

mk
j ≥ 0, Nk

j ≥ 0, as the

form:
νj ≥ m0

j +N0
j (j = 1, 0)

νj ≥ mk
j +Nk

j (j 6= k)

νk < mk
k +Nk

k (j = k)






, (k = 1, n) .

Here Hk (h) ≤ const < ∞, 1 ≤ pk ≤ q < ∞
(
k = 1, n

)
and

Hk =

∫ h

0

n∏

j=1

(aj (υ))
mk

j
−υ

j
− 1

p
k
− 1

q







∏

j∈ENk

ϕk
j (aj (υ))







dak (υ)

ak (υ)
(17)
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for all k ∈ en = {1, 2, ..., n}.
Then

Dυf ∈ Lq (G) , (18)

and the integral inequality holds

‖Dυf‖Lq(G) ≤ C

n∑

k=0

Hk (h) ‖f‖
Λ
〈mk,nk〉
pk,θk

(G;ϕk)
, (19)

where C > 0 is a constant independent of function f = f (x) and h > 0. Also Hk (h)
is defined by (17) for k = 1, n, and for k = 0

H0 (h) =
n∏

j=1

(aj (h))
mo

j −υj−
1
p0

+ 1
q

∏

j∈EN0

ϕ0
j (aj (h)) .

We observe that ENk
= sup pNk

(
k = 0, n

)
.

Other formulation of Theorem 3.1 we can give as following form.

Remark 2. Under the conditions of Theorem 3.1 the following embedding holds:

Dν :

n⋂

k=0

Λ
〈mk,Nk〉
pk,θk

(

G;ϕk
)

⊂ Lq (G) (20)

In particular, for υ = 0 we have
⋂n

k=0Λ
〈mk ,Nk〉
pk,θk

(
G;ϕk

)
⊂ Lq (G) .

Thus, the inclusion (20) is characterized the differential properties of functions from
⋂n

k=0Λ
〈mk ,Nk〉
pk,θk

(
G;ϕk

)
.

Proof. Theorem 3.1 is proved by the method of integral representations of functions
f = f (x), developed by S.L. Sobolev in [1]. The method of the proof of Theorem 3.1 is
the integral identities given by the equality

Dνf = (−1)|ν+m0|C0A0 (h)

∫

E
|EN0 |

dz0 ×

∫

En

{

∆N0

(
Z0

N0

)

Dm0
f (x+ y)

}

Mδ,0dy+

+

n∑

k=1

(−1)|ν+mk|Ck

∫ h

0
Ak (υ)

dak (υ)

ak (υ)
×

×

∫

E|ENk |

dzk
∫

En

{

∆Nk

(
zk

Nk
Dmk

f (x+ y)

)}

Mδ,kdy. (21)

Here Ck are the constants independent on f = f (x) and h > 0, where

∣
∣
∣ν +mk

∣
∣
∣ =

n∑

j=0

(

νj +mk
j

)

,
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Ak (υ) =

n∏

j=1

(aj (υ))
mk

j
−νj−1

∏

j∈E
Nk

(aj (υ))
−1 (

k = 0, n
)
.

In (21), the kernels Mδ,0 and Mδ,k

Mδ,0 = Mδ,0

(
y

a (h)
;

z0

a (h)

)

,

Mδ,k = Mδ,k

(
y

a (h)
;

zk

a (h)

)

, (k = 1, n)

are sufficiently smooth functions with compact support on Rn , respectively. Here

y

a (υ)
=

(
y1

a1 (υ)
, ...,

yn

an (υ)

)

,

zk

a (υ)
=

(
zk,1

a1 (υ)
, ...,

zk,n

an (υ)

)

, k = (1, n)

while the supports of these kernels satisfy condition:

sup pMδ,k

(

y; zk
)

⊂

{

0 < yj − δj ≤ 1
(
j = 1, n

)

(
y; zk

)
∈ En × E|Enk | : 0 < zk,jδj ≤ 1

}

, (j ∈ ENk
) .

Also, a vector δ = (δ1, ..., δn), with δj = ±1
(
j = 1, n

)
be fixed.

We observe that in (22)
∫

E
|ENk |

(...) dzk =

∫

E1

....

∫

E1

(....)

︸ ︷︷ ︸

E
Nk

∏

j∈E
Nk

dzk,j,

where by |ENk
| the number of elements of the set ENk

= sup pNk .

Moreover, the construction of auxiliary functions given by equality

fν,δi (x) = (−1)|m
0+ν|C0A0 (h)

∫

|EN0 |
dz0×

×

∫

En

{

∆N0
(

z0

N0 ; Ωi +Rδi

)

Dm0
f (x+ y)

}

Mδi0dy+

+

n∑

k=1

(−1)|m
k+ν|Ck

∫ h

0
Ak (υ)

dak (υ)

ak (υ)

∫

dzk×

∫

En

{

∆Nk

(
zk

Nk
; Ωi +Rδi

)

Dmk

f (x+ y)

}

Mδi,kdy = J0,δi (f)+

n∑

k=1

J0,δi (f) (i = 1, n)

(22)
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and proof of inequality

‖Dνf‖q,G ≤ C

M∑

i=1

‖Dνf‖q,Ωi+Rδi
≤ C

M∑

i=1

‖fν,δi‖q1Ek
≤ C

M∑

i=1

n∑

k=0

∥
∥Jk,δi

∥
∥
q1En

(23)

shows that estimates of integral expressions ‖Dνf‖q,G reduce to estimates of integral

operators Jk,δi
(
k = 0, n

)
in Lebesgue space Lq(G).

Then, using the Hölder inequality and Young inequality for convolution, we have (see, [2])

‖Dνf‖q,G ≤ C

M∑

i=1

n∑

k=0

∥
∥Jk,δi (f)

∥
∥
q1En

≤ C

n∑

k=0

Qk (h)

(
M∑

i=1

‖f‖ Λ
〈mk ,Nk〉
pk,θk

(Ωi +Rδi , ϕk) ≤

≤ C

n∑

k=0

Qk (h) ‖f‖
Λ
〈mk,Nk〉
pk,θk

(G;ϕk)
.

Here

Qk (h) =

∫ h

0

n∏

j=1

(

(aj (υ))
mk

j
−νj−1

)







∏

j∈E
Nk

ϕk
j (aj (υ))







dak (υ)

ak (υ)
.

This complete the proof of Theorem 3.1.
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