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Motion of Gas-Liquid Mixture in a Connected System
Reservoir- Pipeline

N.A. Agayeva

Abstract. An integral mathematical model of the process of unsteady motion of a gas-liquid
mixture in the reservoir-pipeline system when connecting the main line of new sources has been
built and the associated equations have been solved. An analytical formula has been obtained that
makes it possible to determine the dynamics of pressure at the bottom hole, wellhead and reservoir
productivity depending on the parameters of the system. Numerical calculations are presented for
various values of the system parameters.
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1. Introduction

Determination of pressure at the bottom of the well using wellhead information for
gas and gas condensate fields with abnormally high reservoir pressure is of great scientific
and practical importance. The works [1-5,9,10] are devoted to this problem. In some of
these works [1-5], the pressure at the bottom of the well is determined for the stationary
case of motion without taking into account the dynamic connection of the reservoir-well
system. And in others [9, 10], the filtration process is simplified or the problem is solved
by numerical methods. In works [11-13] methods of conjugation of models for reservoir
and well are presented.

The work [15] is devoted to the physical and mathematical formalization, development
and software implementation of computational algorithms for modeling unsteady three-
phase flows in the conjugated reservoir-well ESP system, which significantly differs from
the considered model of the filtration process and the flow of a gas-liquid mixture in the
conjugated reservoir-pipeline system.
Investigation of the filtration of a gas-liquid mixture and aerated liquid in one-dimensional
and two-dimensional models are devoted to works [16-20].
In these works, studies are carried out without taking into account the filtration process
and fluid flow in the conjugated reservoir-well system.
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n reality, the process of filtration and movement of liquid in the riser pipes and in the main
line is interconnected. Therefore, the filtration and movement of liquid in the riser pipes
and in the main line must be considered together, which is what this work is devoted to.

In [8], the influence of connecting a new source to an existing oil pipeline on the
operating mode of oil wells is determined. And in most cases, not pure oil flows through
the main line, but a gas-liquid mixture. Therefore, determining the impact of connecting
a new source to the existing trunk line on the operating mode of gas and gas condensate
wells is also of great scientific and practical importance.

A rigorous solution to this problem is to take into account the interaction in the
reservoir-well system. At the same time, it is necessary to consider and investigate the
system of equations describing the joint flow of the gas-liquid mixture in the reservoir and
the wellbore and in the main line. These are nonlinear differential equations, and it is not
possible to obtain their exact analytical solution. Therefore, the analytical solution of the
problem posed can be carried out approximately with an accuracy sufficient for practice
[6, 20].

Formulation of the problem. Let the reservoir have a circular shape with a radius
Rk. The outer boundary of the formation is impermeable. The well with radius rc is
located concentrically to the outer boundary of the reservoir. The reservoir is assumed to
be homogeneous in terms of permeability. It is assumed that at the initial moment the
formation is filled with a gas-liquid mixture with a low concentration of liquid. The well
is in operation. During the production of a gas-liquid mixture, a pressure drop occurs at
all points of the formation, as well as at the wellhead.

The mass G0 of the gas-liquid mixture in the formation at each moment of time can
be determined by the formula

G0 = 2πhm

∫ Rk

rc

ρcmrdr. (1)

The initial and boundary conditions required for the filtration of a gas-liquid mixture
are as follows:

P |t=0 = Pk, r = Rk, (2)

P |r=rc
= Pc(t), t > 0, (3)

∂P

∂r

∣∣∣∣
r=Rk

= 0 , t > 0 (4)

The density of the mixture can be determined from the formula [14]:

1 + η

ρcm
=

1

ρo
+

η

ρq

ρcm =
(1 + η)ρoρq
ρo + ηρq

(5)

If the process is taken to be isothermal, then the gas density will be

ρq = P
ρatm
Patm

(6)
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Substituting expression (6) into equation (5), we obtain

ρcm =
1 + η

η
ρox

1

1 + x
(7)

where
x =

ηρatm
ρoPatm

P

x << 1 for practical values of the parameters always.
Therefore, 1

1+x can be represented as

1

1 + x
= 1− x+ x2 − x3 + ... (8)

In the first approximation, taking into account only one term of series (8), from expression
(7) we obtain

ρcm =
(1 + η)ρatm

Patm
P (9)

Then from expression (1) taking into account (9) we obtain

G0 = 2πhm
(1 + η) ρatm

Patm

∫ Rk

rc

P · rdr (10)

Pressure P at any point in the reservoir will be sought in the form [6]

P = PA (t) +A (t) f (r) (11)

A function f (r) satisfying the boundary conditions (3) and (4) will be sought in the form
[6.14]

f (r) = ln
r

rc
− r

Rk
+

rc
Rk

(12)

where A (t) is unknown, depending on time t, function.
Substituting expressions (11) and (12) into expression (10), we obtain

G0 = 2πhm
(1 + η) ρatm

Patm

(
Pc (t)

R2
k − r2c
2

+
R2

k

2
DA (t)

)
(13)

where

D = ln
Rk

rc
− 7

6
+

rc
Rk

+
1

2

(
rc
Rk

)2

− 1

3

(
rc
Rk

)3

The mass inflow of a gas-liquid mixture into a well per unit of time can be determined by
the formula

G = −dG0

dt
(14)

Then, substituting expression (13) into formula (14), we obtain

G = −2πhm
(1 + η) ρatm

Patm

(
Ṗc (t)

R2
k − r2c
2

+
R2

k

2
D Ȧ (t)

)
(15)

26



On the other hand, the inflow of the gas-liquid mixture into the well per unit of time can
be determined by the formula [14,23]

G = k
Pc (T ) + Pc(0)

µβ
π rch

∂P

∂r

∣∣∣∣
r=rc

(16)

where β = Patm
ρatm

, µcm−mixture viscosity, k- formation permeability coefficient, Pc(0),Pc(T )
- downhole pressure at the beginning and end of operation.
Substituting expressions (11) and (12) into formula (16) and equating the resulting expres-
sion with formula (15), we obtain a differential equation with respect to the variableA (t):

Ȧ (t) + αA (t) = − 1

D
Ṗc(t) (17)

where α = k Pc(T )+Pc(0)
µcmmRk

2D(1+η)

Integrating equation (17), we obtain

A(t) = A(0) exp(−αt) +
1

D

∫ t

0
Ṗc (τ) exp (−α (t− τ)) dτ (18)

where A (0) is the constant of integration.
Substituting the resulting expression into formula (11), we obtain

P (r, t) = Pc(t) + (A(0) exp(−αt) +
1

D

∫ t

0
Ṗc (τ) exp (−α (t− τ)) dτ)f(r) (19)

From expression (19), taking into account the initial condition (2), we obtain

A(0) =
Pk − Pc(0)

ln Rk
rc

− rc
Rk

− 1
(20)

Now let’s consider the movement of the gas-liquid mixture in the riser pipes.
Due to the smallness of η, let us take, in the first approximation, a gas-liquid mixture
as a homogeneous gas. Then the equation of gas motion in the pipe and the equation of
continuity are described by the equations of I.A. Charny [21, 22]:

−∂P

∂x
=

∂Q

∂t
+ 2aQ+ ρcmg (21)

−∂P

∂t
= c2

∂Q

∂x

where, Q = ρcmu, u averaged over the cross section of the flow velocity of the mixture in
the column of lifting pipes, c- is the speed of sound propagation in the gas, t - is the time,
x-is the coordinate, ρcm-is the density of the gas-liquid mixture, a-is the drag coefficient.
Substituting expressions (9) into the first equation of expression (21) and differentiating
into the first equation of expression (21) in time x, and the second in t and subtracting
one from the other, we get

∂2P

∂t2
= c2

∂2P

∂x2
− 2a

∂P

∂t
+

1 + η

β
c2g

∂P

∂x
(22)
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At the initial moment, the movement of the mixture in the column of lifting pipes occurs
in a stationary mode. Therefore, from expression (21) we will have

−∂P

∂x
= 2aQ+

(1 + η)

β
gP (23)

C is the constant of integration.
Boundary conditions

P |x=0 = Pc(0) (24)

Then, from expression (23), taking into account boundary condition (24) for the initial
and boundary conditions of equation (22), we will have

P |t=0 =
2aβQ0

(1 + η)g

(
exp

(
−(1 + η)

β
gx

)
− 1

)
+ Pc(0) exp

(
−(1 + η)

β
gx

)
(25)

dP

dt

∣∣∣∣
t=0

= 0 (26)

P |x=0 = Pc(t) (27)

P |x=l = Py(t) (28)

The solutions of equation (22), taking into account the boundary conditions (27) and
(28), will be sought in the form [7]

P = Pc(t)−
Pc(t)− Py(t)

l
x+

n∑
i=1

φi (t) sin

(
iπx

l

)
(29)

where φi (t) is an unknown time-dependent t function, l is the depth of descent
pipes.
Substituting expression (29) into equation (22), multiplying both sides of the resulting
expression by sin

(
iπx
l

)
and integrating it from 0 to l, we obtain the equation

φ̈i + 2aφ̇i +
c2i2π2

l2
φi = − 2

π P̈c(t)− 2
π P̈y(t) +

12a
π ṖA(t)− 4a

π Ṗy(t)+

+4(1+η)gc2

β lπ Pc(t)− 4(1+η)gc2

βπ l Py(t)
(30)

Applying the Laplace transform, from equation (30), taking into account the initial con-
ditions (25) and (26), we obtain

φ̄i =
sφi(0)

(s−ξ1)(s−ξ2)
− 2aφi(0)

(s−ξ1)(s−ξ2)
+ 2sPc(0)

π(s−ξ1)(s−ξ2)
+

+
2sPy(0)

π(s−ξ1)(s−ξ2)
− 12aPc(0)

π(s−ξ1)(s−ξ2)
+

+
4aPy(0)

π(s−ξ1)(s−ξ2)
− 2s2P̄c

π(s−ξ1)(s−ξ2)
− 2sPc(0)

π(s−ξ1)(s−ξ2)
+

+ 12asP̄c
π(s−ξ1)(s−ξ2)

− 4asP̄y

π(s−ξ1)(s−ξ2)
+

+ 4(1+η)c2gP̄c

πβ l(s−ξ1)(s−ξ2)
− 4(1+η)c2gP̄y

πβ l(s−ξ1)(s−ξ2)

(31)
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where ξ1 and ξ2 are the roots of the equation

s2 + 2as+
c2π2i2

l2
= 0.

φi(0) and φ̇i(0) are determined from the initial conditions (25) and (26).

At the initial moment of time at t = 0, equating expressions (25) and (29).

Pc(0)− Pc(0)−Py(0)
l x+

∑n
i=1 φi (0) sin

(
iπx
l

)
=

2aβQ0

(1+η)g

(
exp

(
− (1+η)

β gx
)
− 1
)
+ Pc(0) exp

(
− (1+η)

β gx
)

Multiplying both sides of the above expression bysin
(
iπx
l

)
and integrating it from 0 to

l and taking into account that for practical values of the parameters of the system,(
(1+η)

β gx
)

<< 1 and therefore exp
(
− (1+η)

β gx
)
can be represented

exp

(
−(1 + η)

β
gx

)
= 1−

(
(1 + η)

β
gx

)
get

φi(0) = −2Pc(0)
π − 2Py(0)

π + 4aβQ0

β

(
π l(

(1+η)
β

g
)2

l2+π2

)
− 8aβQ0

(1+η)g +

+Pc(0)
β

2π(1+η)gl(
(1+η)

β
g
)2

l2+π2

Differentiating expressions (29) with respect to time t and substituting them into condition
(26), we obtain

φ̇i(0) = 0

Substituting expression (29) and (9) into the first equation of expression (21), we obtain

Pc(t)
l − Py(t)

l −
∑n

i=1

π iφi(t)
l cos

(
iπx
l

)
= ∂Q

∂t + 2aQ+ 1+η
β gPc(t)−

−1+η
β g

Pc(t)−Py(t)
l x+ 1+η

β g
∑n

i=1 φi (t) sin
(
iπx
l

) (32)

Applying Laplace transforms, from equation (32), we obtain [24,25]

Q̄ = P̄c
l(s+2a) −

P̄y

l(s+2a) −
∑n

i=1
π i

l(s+2a) cos
(
iπx
l

)
φ̄i +

Q0

(s+2a) −
(1+η)g

β
P̄c

(s+2a)+

+ (1+η)gx
β l

P̄c
(s+2a) −

(1+η)gx
β l

P̄y

(s+2a) −
1+η
β g

∑n
i=1

φ̄i

(s+2a) sin
(
iπx
l

) (33)

Continuity condition

Ḡcm = f Q̄
∣∣
x=0

(34)
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taking into account expressions (16), (19) and (34), we obtain the following equation

Gcm0
s+α + A1Pc(0)

s+α − fQ0

(s+2a) =

fP̄c

l(s+2a) −
fP̄y

l(s+2a) −
∑n

i=1
fπ i

l(s+2a) φ̄i − (1+η)g
β

f P̄c

(s+2a) +
A1sP̄c
(s+2a)

(35)

where A1 =
k[Pk+Pc(0)]
Dµcm β π h

From equation (35) with i = 1and we obtain

P̄c = P1c +
[

f P̄y

l(s+2a) −
2s2f P̄y

l(s+2a)(s−ξ1)(s−ξ2)
−

− 4a s f P̄y

l(s+2a)(s−ξ1)(s−ξ2)
−

−4(1+η)c2g
l β

f P̄y

(s+2a)(s−ξ1)(s−ξ2)

]
(s+α)(s+2a)(s−ξ1)(s−ξ2)

A1(s−β1)(s−β2)(s−β3)(s−β4)

(36)

whereβ1, β2, β3 and β4 are the roots of the equation

A1 l
2β s(s+ 2a)(s− ξ1)(s− ξ2) + lβ f(s+ α)(s− ξ1)(s− ξ2)−

−l2g f (1 + η)(s+ α)(s− ξ1)(s− ξ2) + 2f l β s2 (s+ α)+
+12aβ f l s(s+ α) + 4fgc2(1 + η)(s+ α) = 0 ,

Φ̄1 =
φ10

(s−ξ1)(s−ξ2)
+ 2a

•
φ10

(s−ξ1)(s−ξ2)
+ 2sPc(0)

π(s−ξ1)(s−ξ2)
+

2sPy(0)
π(s−ξ1)(s−ξ2)

−

− 12aP c(0)
π(s−ξ1)(s−ξ2)

+
4aP y(0)

π(s−ξ1)(s−ξ2)

(37)

P1c =

[
fπΦ̄1

l(s+ 2a)
+

Gcm0

s+ α
+

A1Pc(0)

s+ α
− fQ0

(s+ 2a)

]
(s+ α)(s+ 2a)(s− ξ1)(s− ξ2)

A1(s− β1)(s− β2)(s− β3)(s− β4)

Passage of the gas-liquid mixture through the choke.

The gas-liquid mixture, passing through the choke, enters the transport line. When the
mixture passes through the nozzle, its pressure decreases significantly.

In the first approximation, the relationship between the flow rate of the mixture Qsht and
the pressure drop between the inlet and outlet of the choke is assumed to be linear [8]:

Qsht = α0(Py(t)− Psht(t)). (38)

where α0 is the productivity coefficient

After the Laplace transform from expression (38), we obtain

Q̄sht = α0(P̄y − P̄sht) (39)

From the continuity condition, we have

fQ|x=l = ρcmQsht. (40)
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Substituting expressions (33) and (39) into formula (40) taking into account only one term
of the series, in the first approximation we obtain the following equation from which, after
the Laplace transform, Psht(t) is determined

P̄sht = P̄y − f P̄c

ρcmlα0(s+2a) +
f P̄y

ρcmlα0(s+2a) −
f π φ̄1

ρcmlα0(s+2a)−
− f Q0

ρcmα0(s+2a) +
f g(1+η)P̄y

ρcmα0β(s+2a)

(41)

where Pshtis the pressure at the outlet of the choke.

The movement of the gas-liquid mixture in the main pipeline.

Consider the movement of a gas-liquid mixture in a main pipeline. We place the origin
of the coordinate axis x1 at the inlet of the pipeline and direct it in the direction of the
flow of the gas-liquid mixture. Suppose that at the moment t = 0at a distance l2 from the
wellhead, a new source with a flow rate G is connected to the main pipe. Then for the
equation of motion of the gas-liquid mixture in the pipeline will have the form

∂2P

∂t2
= c2

∂2P

∂x21
− 2a1

∂P

∂t
− 2a1c

2G

f1
δ(x1 − l2). (42)

The initial and boundary conditions

∂P

∂t

∣∣∣∣
t=0

= −c2
G

f1
δ (x1 − l2) , 0 ≤ x ≤ l, (43)

P (x1, 0)|t=0 = Psht(0)− 2a1Qcm(0)x1, 0 ≤ x ≤ l, (44)

P |x1=0 = Psht(t), t > 0, (45)

P |x1=l1
= P2, t > 0, (46)

where δ(x) is the Dirac function.

The solution of equation (42), taking into account the boundary conditions (45) and (46),
will be sought in the form:

P = Psht(t)−
Psht(t)− P2

l1
x1 +

n∑
i=1

φ2i (t)

(
sin

iπx1
l1

)
, (47)

where φ2i (t) is an unknown time-dependent function t, l1 is the length of the pipeline.

Substituting expression (47) into formula (42), taking into account the initial conditions
(43), (44) similarly to (30) in the case of P2 = const, we obtain a differential equation
for φ2i. Having solved this equation, and substituting the obtained result into the first
equation of system (21) and after the Laplace transform, we obtain

Q̄cm

∣∣
x1=0

= Qcm(0)
s+2a1

−
∑n

i=1

(
iπ
l1

)
φ̄2i

s+2a1
+ P̄sht

l1(s+2a1)

− P2
2l1s(s+2a1)

, (48)
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where Q = ρcmu1,u1, averaged over the cross-section of the flow velocity of the mixture of
the transport pipeline, P2 is the pressure at the end of the pipeline, and φ̄2i.

φ̄2 =
(s+2a1)φ2(0)
(s−ξ3)(s−ξ4)

− φ̇2(0)
(s−ξ3)(s−ξ4)

+ 2(s+2a1)PHB(0)
π(s−ξ3)(s−ξ4)

+ 2Ṗsht(0)
π(s−ξ3)(s−ξ4)

−
− 2s(s+2a1)P̄sht

π(s−ξ3)(s−ξ4)
− 4a1c2G

l1f1s(s−ξ3)(s−ξ4)
sin
(
π l2
l1

) (49)

where ξ3 and ξ4 are the roots of the equation s2 + 2a1s+
c2π2i2

l21
= 0

Continuity condition
f1Qcm|x1=0 = ρcmQsht (50)

Substituting expressions (39) and (48) into formula (50) taking into account only one term
of the series, in the first approximation we obtain the following equation

f1Qcm(0)

s+ 2a1
− π

l1

f1φ̄2

s+ 2a1
+

P̄shtf1
l1(s+ 2a1)

− f1P2

2l1s(s+ 2a1)
= ρcmα0(P̄y − P̄sht) (51)

From formula (51), taking into account expressions (36), (41), we obtain

P̄y = A4P̄1clβA1(s−β1)(s−β2)(s−β3)(s−β4)(s−α7)(s−α8)
A6(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

−fπ Φ̄1l2β2A1(s−β1)(s−β2)(s−ξ1)(s−ξ2)(s−ξ3)(s−ξ4)
A6(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

f Qcm(0)l3β2A1(s−β1)(s−β2)(s−β3)(s−β4)(s−ξ1)(s−ξ2)
A6(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

+
f1Q1(0)l3l21β

3ρcα0A1(s+2a)(s−β1)(s−β2)(s−β3)(s−β4)(s−ξ1)(s−ξ2)(s−ξ3)(s−ξ4)
A2A6(s−α1)(s−α2)(s−α3)(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

− l3l1β
3πρcα0A1f1Φ̄2(s+2a)(s−β1)(s−β2)(s−β3)(s−β4)(s−ξ1)(s−ξ2)(s−ξ3)(s−ξ4)
A2A6(s−α1)(s−α2)(s−α3)(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

−f1P2

2
l3l1β

3ρcα0A1(s+2a)(s−β1)(s−β2)(s−β3)(s−β4)(s−ξ1)(s−ξ2)(s−ξ3)(s−ξ4)
A2A6s(s−α1)(s−α2)(s−α3)(s−j1)(s−j2)(s−j3)(s−j4)(s−j5)(s−j6)(s−j7)

(52)

where, A2 = l21βρcα0,

Φ̄2 =
(s+2a1)φ2(0)
(s−ξ3)(s−ξ4)

− φ̇2(0)
(s−ξ3)(s−ξ4)

+ 2(s+2a1)Psht(0)
π(s−ξ3)(s−ξ4)

+ 2Ṗsht(0)
π(s−ξ3)(s−ξ4)

−
− 4a1c2G

l1f1s(s−ξ3)(s−ξ4)
sin
(
π l2
l1

) (53)

α1, α2, α3 roots of the equation

l1ρcmα0(s+ 2a1)(s− ξ3)(s− ξ4) + f1(s− ξ3)(s− ξ4) + 2f1s(s+ 2a1) = 0

j1, j2, j3, j4, j5, j6, j7 - roots of the equation

α2
0ρ

2
cmA1l

3β2(s+ 2a)(s− β1)(s− β2)(s− β3)(s− β4)(s− ξ1)(s− ξ2)

−A3 l A1β(s− α4)(s− α5)(s− α6)(s− β1)(s− β2)(s− β3)(s− β4)−

−A4 A5β(s− α7)(s− α8)(s− α9)(s− α10)(s+ α) = 0

32



A3 = l2βρcα0, α4, α5, α6 roots of the equation

l2βρcmα0(s+ 2a)(s− ξ1)(s− ξ2) + fβ l(s− ξ1)(s− ξ2) + (1 + η)fgl2(s− ξ1)(s− ξ2)+
+4l f β a s+ 4f c2g(1 + η) = 0

A4 = lfβ, α7, α8 roots of the equation

2fβ ls2 − fβ l(s− ξ1)(s− ξ2)− 12l f β a s− 4f c2g(1 + η) = 0 (54)

A5 = fβ, α9, α10 roots of the equation

2fβ s2 − fβ(s− ξ1)(s− ξ2) + 4 f β a s+ 4f c2g(1 + η) = 0

Applying the Laplace transform and taking into account the convolution and inversion
theorems [24,25], from expressions (16), (36) and (52), taking into account the numerical
values of the parameters of the system

rc = 0.075 m; ρatm = 0.668 : q/m3; atm = 105 Pa; π = 3.14;

h = 5m; Pc(0) = 2.8 · 107P0; Pk = 3 · 1070;

Py(T ) = 8 · 106P0; P0 = 2.3 · 107P0; Py(0) = 2.3 · 107P0;

µ = 9 · 10−5 P0 · s ; a = 10−3s−1; m = 0.2; c = 300m/s; T = 180 day;

we obtain

Py = 220.741829 exp(−12.7205207 t)− 1.77941125 · 107 exp(−0.9977667 t)−
−3.870285957 · 107 exp(−1.0 t) + 1.801377764 · 107 exp(−0.00222335325 t)+
+7.525148748 · 105 exp(−1.06284852 t) + 2.708110455 · 105 exp(−12.7205207 t)+
+1.508324373 · 107 exp(−0.198066191 t)− 61.19851847 exp(−1.062851662 · 10−7t)+
+1.824140489 · 107 exp(−0.1000058782 t) cos(0.9366764298 t)−
−1.683680169 · 107 exp(−0.1000058782 t) sin(0.9366764298 t)−
−1.188600565 · 106 exp(−0.263433087 t) cos(0.487258856 t)+
+9.525814957 · 105 exp(−0.263433087 t) sin(0.487258856 t) + 2.23287558110 · 107

(55)

Pc = −987.698349 t exp(−12.7205207 t)− 3.0006076191 · 10−7t exp(−1.062851662 · 10−7t)
9.2849183341 · 106 exp(−0.1000058782 t) cos(0.9366764298 t)+
+1.990556025 · 107 exp(−0.1000058782 t) sin(0.9366764298 t)+
+3.683774082 · 1011 exp(−0.263433087 t) cos(0.487258856 t)−
−4.398588993 · 1011 exp(−0.263433087 t) sin(0.487258856 t) + 2.265233896 · 107−
−8.8447869491 · 1011 exp(−12.7205207 t)− 1.172419217 · 1010 exp(−1.062851662 · 10−7 t)−
−5.568879876 · 105 exp(−0.9977667 t) + 1.172502122 · 1010 exp(−1.062848515 · 10−7t)−
−1.132111363 · 106 exp(−1.0 t) + 1.752236851 · 107 exp(−0.00222335325 t)+
+8.8447486761 · 1011 exp(−12.72052207 t) + 1.8843259051 · 107 exp(−0.198066191 t)

(56)
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Numerical calculations are given for the given values of the system parameters.

The calculation results are shown in Fig. 1-Fig. 3.

As can be seen from Fig. 1, the pressure at the bottom of the well at the beginning
increases instantly and this drop is linear.

It can be seen from Fig. 2 that after the well start-up in the initial period, the wellhead
pressure also increases instantly.

Figure 3 shows that over time, well productivity decreases and is linear. Figure 3 shows
the change in well productivity at different values of the mass fraction of oil η in the
mixture. As can be seen from Fig. 3, with an increase in the mass fraction of oil η in the
mixture, its sharp drop occurs. For example, when the mass fraction of oil in the mixture
is η = 0.1, the well productivity is equal to 1 : q/s, and at the time when η = 0.03it grows
more than 12 times, the well productivity is equal to 1 kg/s.

2. Conclusion

Based on the research carried out taking into account the dynamic

the relationship of the reservoir-well system and changes in the density of the mixture
depending on the pressure, analytical formulas were obtained, with the help of which the
pressure at the bottom of the well, the volume of the produced gas-liquid mixture per unit
time, depending on the parameters of the reservoir-pipeline system and the mass fraction
of oil at unsteady flow of gas-liquid mixture.

A model of the process of unsteady movement of a gas-liquid mixture in the reservoir-
pipeline system is built when a new source is connected and fluid is withdrawn from an
existing transport line. Analytical expressions have been obtained that make it possible
to determine the productivity of the well, as well as the pressure at its mouth and bottom
at any change in pressure at the outlet of the pipeline and connecting a new source to the
existing line.

3. Denotation

P -pressure at any point in the formation; Pc(t) - pressure at the bottom of the well;
Pk - pressure on the formation contour; -ρcm the density of the mixture of oil and gas;
r- coordinate; h- formation thickness; -m coefficient of porosity of the formation, ρo- oil
density; ρq- gas density; Patm- Atmosphere pressure;

ρatm- gas density at atmospheric pressure; η- mass fraction of oil in gas,

µcm - mixture viscosity, k- formation permeability coefficient,

Pc(0) , Pc(T )- pressure at the bottom hole at the beginning and end of operation,

c - speed of sound propagation in gas, t- time, x- coordinate,

a - drag coefficient, PC(t) - wellhead pressure, f -pipe flow area, φi (t)- unknown time
t-dependent function, l- pipe running depth.
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Fig. 1 - Graph of pressure dynamics at the wellhead
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Fig. 2 - Graph of pressure dynamics at the bottom of the well
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Fig. 3 Dynamics of well productivity 1-η = 0.1, 2-η = 0.08, 3-η = 0.03
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