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On Properties of Ahlfors-Beurling Transform of Finite
Complex Measures
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Abstract. In the present paper we study asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform of the finite complex atomic discrete measure, and using the notion of
Q-integration introduced by Titchmarsh we prove that the restricted Ahlfors-Beurling transform
of the finite complex measure, singular part which is concentrated at a finite number of points is
Q@-integrable and an analogue of the Riesz equality holds.
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1. Introduction

The Ahlfors-Beurling transform of a function f € L, (C), 1 < p < oo, is defined as
the following singular integral

1
(Bf)(z) = —= lim f(iw)Qdm(w).
T e—0+ {weC: |z—w|>e} (Z - w)
Let ©Q be a bounded domain in the complex plane and f € L;(£2). Namely, the
restricted Ahlfors—Beurling transform Bg is defined as

1 f(w)
(Baf)(:) = BOxal)E) =~ i | (), zeq

The Ahlfors—Beurling transform is one of the important operators in complex analysis.
It is the ”Hilbert transform” on complex plane. It has been shown in [1, 11,13, 22, 29, 31|
that this transform plays an essential role in applications to the theory of quasiconformal
mappings and to the Beltrami equation with discontinuous coefficients.

From the theory of singular integrals (see [26]) it is known that the Ahlfors-Beurling
transform is a bounded operator in the space L,(f2), 1 < p < oo, that is, if f € L,(Q),
then Bqo(f) € L,(2) and

1Baflz, < CollfllL,. (1)
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In the case f € L1(€2) only the weak inequality holds,

miz € Q: [(Baf)()] > A} < 7l )

where m stands for the Lebesgue measure, C),, C are constants independent of f. From
inequalities (1), (2) it follows that the Ahlfors—Beurling transform of the function f €
L1(2) satisfies the condition

m{z € Q: [(Baf)(z)| > A} =0(1/X), A = +o0.

In [13-16, 20, 21, 23, 27, 30] the boundedness of the operator B in other function spaces
(in the spaces of Sobolev, Besov, Campanato, Morrey, etc.) was studied.

Note that the Ahlfors—Beurling transform of a function f € L1(f2) is not Lebesgue
integrable. In [7] the authors shows that the Ahlfors-Beurling transform of a function
f € L1(Q) is A-integrable on Q and an analogue of the Riesz equality holds.

In the present paper we study asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform of the finite complex atomic discrete measure, and using the
notion of Q-integration introduced by Titchmarsh we prove that the restricted Ahlfors-
Beurling transform of the finite complex measure, singular part which is concentrated at
a finite number of points is Q-integrable and an analogue of the Riesz equality holds.

2. Asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform of the finite complex atomic discrete
measure

In this section we studying the asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform of the finite complex atomic discrete measure.

Definition 1. Let the set X € C consist of a finite or countable number of elements.
If there exist § > 0 such that for every z,y € X in the inequality |z — y| > § holds, then
the set X is called an atomic set.

Definition 2. If the measure v is concentrated on an atomic set, then the measure
v is called an atomic discrete measure.

Let v is atomic discrete measure on the complex plane. The function

1 dv(w)

Br)(z) = —— lim ,
( )( ) T e=0+ JiweC : |z—w|>e (z _w)2

zeC

is called the Ahlfors-Beurling transform of the measure v.
It’s obvious that the Ahlfors-Beurling transform of the atomic discrete measure v is
finite for any z € C, and if

suppr = X = {2z }je, v(zj) =y, jEJ,
then

(Br)) = -3 Mg 2 X

jeJ
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1 Q;
Br)(z) = —— — . 2=z, cX.
( )( ) . Z ' (Zj _ 2)2 J0
J€J, j#ijo
Theorem 1. Let v is atomic discrete measure on the complex plane. Then the

equation

lim Am{z € C: [(Bu)(2)] > A} = [Iv]

A—+00
holds, where ||v|| is a total variation of the measure v.
Proof: Let suppr = {z;}jes and v(zj) = o, j € J. Denote

do = inf{p(zi, 2j) : zi,2; € suppr} > 0,

5
Ko = UU<ZJ, éf)
jeJ

where U(z;¢) = {w € C: |w — z| < €}. Then for every z € C\ Ky we have
1

(B = 1 [ | < 7 X % < 2ol

jeg I jeJ

This show that for any A > =5 HVH the set {z € C\ Ky : |(Bv)(z)| > A} is empty, and

therefore
m{z € C\ Ky : |[(Bv)(z)| > A} =0. (3)

For every z € U (Zjo; %0) \ {%j,} it follows from the inequality

1 a; 1 ]ozj]
- ) < =
s ol s oy,

that for any jo € J

lim Am{z e U <z]0, if) : |[(Br)(2)| > A}

A—+00
. do |ajo
= /\ETOO)\m{z eU <sz, ) —| : |2| > A} = |aj,l. (4)

|ZJ0

From equations (3) and (4) we obtain that

lim Am{z € C: |(Br)(z)| > A}

A—+00

i 3 om(z < U (2062 ) B> 2} = 3 el = o]

)\—>+
OO ] Jjo€J
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This completes the proof of the Theorem 1.
Corollary 1. Let the measure v be concentrated at a finite number of points in the
domain 2 € C. Then the equation

AETwAm{z €Q: |(Bv)(z)| > A} = )\EI-‘,I}OOAm{Z eC: |(Bv)(2)| > A} =||v]

holds.

3. On the additivity of the (Q-integral and (’-integral

For a measurable complex function f (z) on domain Q we set
[f ()], = [f (2)]" = f(2) for |[f(2)] <n
[f(2)],,=n-sgnf(z), [f(2)]"=0for |f(z)] >n, neN,

where sgnw = ﬁ for w # 0 and sgn0 = 0.

In 1928, Titchmarsh [28] introduced the notions of @- and Q’-integrals of a function
measurable on €.

Definition 3. If the finite limit hm fQ ], dm (2) hm fQ " dm (2), respec-

tively) exists, then f is said to be Q mtegmble (Q’ mtegmble respectlvely) on §2; that is,
FeQ) (f €@ (9Q)). The value of this limit is referred to as the Q-integral (Q'-integral)
of this function and is denoted by (Q) [, f (z) dm (2) ((Q') [, f (z) dm (z)).

In the same paper, Titchmarsh when studying properties of trigonometric series conju-
gate to Fourier series of Lebesgue integrable functions, established that the Q-integrability
leads to a series of natural results. A very uncomfortable fact impeding the application
of Q-integrals and )’-integrals when dealing with diverse problems of function theory is
the absence of the additivity property; that is, the Q-integrability (Q’-integrability) of two
functions does not imply the Q-integrability (Q'-integrability) of their sum. If one adds
the condition

m{zeQ: |f(z)] > A} =0(1/X),\ = +00 (5)

to the definition of Q-integrability (Q’-integrability) of a function f, then the Q-integral

and @'-integral coincide (Q (©2) = Q' (€2)), and these integrals become additive.
Definition 4. If f € Q'(Q2) (or f € Q(R)) and condition ( ) holds, then f is said

to be A-integrable on Q, f € A(f), and the limit hm fQ )]ndm(z) (or the limit

lim fQ z)]"dm(z)) is denoted in this case by (A fQ

The properties of Q- and ’-integrals were investigated in [3, 4, 10, 17, 18, 28 |; for
the applications of A-, Q- and @'-integrals in the theory of functions of real and complex
variables we refer the reader to [2, 5-10, 24, 25, 32, 33|.

Let us note some properties of the Q and Q’-integrals that we will need.

Theorem 2 [10]. If f € Q(2) and g € L(Q?) (that is, g is Lebesgue integrable on
the domain Q). Then f+ g € Q(Q2) and

(@ [ £+ @llde = (Q) [ s@)do+ (L) [ gla)da,
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Theorem 3 [10]. Let f € Q'(Q2). Then f € Q(Q) and the following equation holds:

Q) /Q f(x)dz = (Q') /Q f(@)dz. (6)

Definition 5. We denote by M(£;C) the class of measurable functions f on the

domain (2 for which a finite limit /\hl}rl Am{z € Q: |f(z)] > A} exists.
—+o0

Theorem 4 [10]. The Q-integral and the @Q'-integral coincide on the function class
M(§2;C), that is if f € M(Q;C), then for the existence of the integral (Q) [, f(z)dz it is
necessary and sufficient that the integral (Q') [, f(x)dz exist, and in that case equatlon
(6) holds.

Theorem 5 [10]. If a function f € M(Q;C) is @’ -integrable on the domain 2 and
g € A(), then the sum f+g € M(Q;C) is Q' integrable on €2, and the following equation

holds:
(@) | [7@) + gtallde = (@) [ e +(4) [ glo)de

Corollary 2. If a function f € M(Q;C) is @ -integrable on the domain Q and
g € A(R), then the sum f+g € M(Q;C) is Q integrable on 2, and the following equation

holds:
@ [ 1) + glde = @ [ fGado + () [ glard,

4. Riesz’s equality for the Ahlfors-Beurling transform of the finite
complex measure, singular part which is concentrated at a finite
number of points

From the properties of singular integrals it follows that (see [26]) if f € L,(2), p > 1
and g € Ly(Q),q¢>1,1/p+1/g=1, then

/ 9(2)(Baf)()dm(2)

R fg) ,
B Wiﬁo//{wzefz |z—w|>¢} (Z_ ) Gowp’ ( )d ()

- /Q £(2)(Bag)(2)dm(z). (7)

In [7] the authors shows that the Ahlfors—Beurling transform of a function f € Li(Q)
is A-integrable on Q and put forward an analogue of (7):

Theorem 6 [7]. Let f € L1(2) and g(z) be a bounded function on 2 with bounded
(Bag)(z) on €. Then the function g(z) - (Bqf)(z) is A-integrable on € and

(A) /Q (2)(Baf)()d / £(2)(Bag)(z)dm(2). (8)
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In this section we prove that the restricted Ahlfors-Beurling transform of the finite
complex measure, singular part which is concentrated at a finite number of points is Q-
integrable and an analogue of (7) and (8) holds.

Theorem 7. Let v be a finite complex measure on the bounded domain €2, singular
part which is concentrated at a finite number of points, and the function g is Holder con-
tinuous on the closure of the domain 2. Then the function (Bqv)(2)g(z) is Q-integrability
on the domain €2, and the equation

(Q)AQ(Z)(BQV)(Z)dm(Z) Z/Q(Bng)(Z)dV(Z)

holds.
Proof of Theorem 7. Let

dv(z) = f(z)dm(z) + dvg(2),

where vy is singular part of the measure v and f(z) is the Radon-Nikodym derivative of
the absolutely continuous part of the measure v. At first we prove that

(@) /Q 9(2)(Baws)(z)dm(z) = /Q (Bag)(2)dvs(2). (9)

Since the function g is continuous on the closure of the domain €2, then it is bounded on
it, that is there exists a number M > 0 such that for any z € Q the inequality |g(z)| < M
holds.

Let supprs = {2z}, and v4(2) = ag, k = 1,n. Denote

n

G(z) = —mg(2)(Bavs)(2) = ) ( )29(«2)7

2 — 2
k=1 \°k

823

_16nM||v|

do = inf{p(zi, 2j) : 2,25 € supprg} >0, & 5
0

For any A > d; denote

" M n
Kl,x—uv(zk; i') Kan = U [ s tlloten
k=1

Then for any A > ¢; it follows from the inclusion
Q\Kj)C{ze: |G(2)| <A} CQ\ K

and from the inequality

M
/Kl\Kz Gllim(z) < mEN ) (0t O+d) D ey
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|g(Z> — g(zk]
" /z memww PN
k:g(zr)=
that there exist ( f 0 and
Q) / G(z)dm(z) = lim Cordm(e)
Q A—+o00 {ZGQ: |G(z)|§)\}

. 823
= lim / ————g(2)dm(z)
1 €0+ Jlze: |z—zp|>e} (Z - zk’)2

= —WZakBQg(zk) = —W/Q(BQQ)(Z)dVS(Z)a

k=1
that is the equation (8) holds. Then it follows from the Theorems 1, 4, 5 and from (8)
and (9) that

@ /Q 9(2) (Baw) (2)dm(2)
- Q) /ﬂ 9(2) (Baws) (=)dm(z) + (4) /Q 9(2)(Baf)(2)dm(2)
- (@) /Q 9(2) (Baws)(2)dm(2) + (A) /Q 9(2)(Baf)(x)dm(2)

- /Q (Bag)(2)dvs(z / £(2)(Bag)(z)dm(z) = /Q (Bag)(2)dv(2).

This iscompletes the proof of the Theorem 7.

Corollary 3. Let v be a finite complex measure on the bounded domain €2, singular
part which is concentrated at a finite number of points, and the function g is Holder con-
tinuous on the closure of the domain Q. Then the function (Bqv)(2)g(z) is Q'-integrability
on the domain €2, and the equation

(Q’)/QQ(Z)(BQV)(z)dm(z) :/Q(ng)(z)du(z)

holds.
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