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Basicity of Linear Phase Exponential System in Grand-
Sobolev Spaces

Seadet A.Nurieva

Abstract. We define a separable MW p)
1(a, b) subspace in grand-Sobolev spaces. Then we show

that this subspace is isomorphic to the direct sum of some subspace of grand-Lebesgue space and
complex plane and so the system 1 ∪

{
ei(n+αsignn)t

}
nϵZ

forms a basis for the spaceMW p)
1 (−π, π),

where α ∈ C is a complex parameter.
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Lately in mathematics, there has been an upsurge of interest in non-standard spaces
(see [17, 18, 19, 20, 21, 22]). The study of differential equations in non-standard Sobolev
spaces requires the knowledge of basicity properties of trigonometric systems in corre-
sponding non-standard function spaces. Basicity properties of some trigonometric systems
in such spaces have been treated in [23, 24, 25, 26, 27, 28, 29].{

ei(n+αsignn)t
}
nϵZ

, (1)

1 ∪
{
ei(n+αsignn)t

}
n̸=0

. (2)

The study of basicity properties of the systems (1) and (2) in Lebesgue function space
probably dates back to Paley-Wiener [6] and N. Levinson [7]. Riesz basicity of (1)-type sys-
tems was studied in L2 by M.I.Kadets [8], and in Lp by A.M.Sedletski [9] and E.I.Moiseyev
[10, 11]. This field was further developed by B.T. Bilalov [12, 13, 14, 15].

Grand-Lebesgue spaces Lp) have been introduced in [17] in the study of Jacobian in
an open set. These are the functional Banach spaces, and they have wide applications in
the theory of partial differential equations, theory of interpolation, etc. The study of some
problems of harmonic analysis in these spaces is of special interest.

As these spaces are not separable, basis and approximation-related problems remained
unsolved in them. In [25], some Mp) subspace was constructed, interesting from the point
of view of the theory of differential equations. In [26, 27], basicity properties of the systems
(1) and (2) have been studied in this subspace.
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Grand-Sobolev spaces have been studied in many works, including [17]. In this work,
we explore the basicity of one exponential system for a subspace MW p)

1 (−π, π) of grand-
Sobolev space.

So, let 1 < p < ∞. A space Lp) (a, b) of measurable functions satisfying the condition

∥f∥p) = sup
0<ε<p−1

(
ε

b− a

∫ b

a
|f |p−εdt

) 1
p−ε

< ∞ (3)

in the interval (a, b)⊂R is called a grand-Lebesgue space.

Denote by M̃p)(a, b) the set of all functions satisfying the condition
∥∥∥f̂ (·+ δ)− f̂ (δ)

∥∥∥
p)

→

0 as δ → 0 and belonging to Lp) (a, b), where

f̂ (t) =

{
f (t) , t ∈ (a, b) ,
0, t /∈ (a, b) .

It is clear that the set M̃p)(a, b) is a manifold in Lp) (a, b). Denote by Mp)(a, b) the
closure of M̃p)(a, b) with respect to the norm (3).

Denote by Wp)
1 (a, b) the space of functions which belong to Lp) (a, b) together with

their derivatives equipped with the norm

∥f∥Wp)
= ∥f∥p) + ∥f ′∥p). (4)

We will call this space a grand-Sobolev space:

Wp)
1 (a, b) =

{
f \ f, f ′ ∈ Lp)(a, b), ∥f∥p) + ∥f ′∥p) < ∞

}
.

It is easy to prove that this is a Banach space. As is known, Lp) (a, b) is not separable.

Therefore, Wp)
1 (a, b) is also not a separable space. Denote by M̃W p)

1
(a, b) the set of all

functions which satisfy the condition
∥∥∥f̂ ′

(·+ δ)− f̂
′
(δ)

∥∥∥
p)

→ 0 as δ → 0 and belong to

Wp)
1 (a, b), where

f̂ (t) =

{
f (t) , t ∈ (a, b) ,
0, t /∈ (a, b) .

It is clear that the set M̃W p)
1
(a, b) is a manifold in Wp)

1 (a, b). Denote by MW p)
1(a, b)

the closure of M̃W p)
1
(a, b) with respect to the norm (4).

The following lemma is true.

Lemma 1. The operator A (f, λ) = λ +
∫ t
a f (τ) dτ creates an isomorphism between the

spaces Mp)(a, b)⊕C and MW p)
1(a, b), where C is a complex plane, 1 < p < ∞.

Proof. Let f ∈ Mp)(a, b). Then
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∥∥∥∥λ+

∫ t

a
f (τ) dτ

∥∥∥∥
Wp)

=

∥∥∥∥λ+

∫ t

a
f (τ) dτ

∥∥∥∥
p)

+ ∥f∥p) ≤ ∥λ∥p)+

+

∥∥∥∥∫ t

a
f (τ) dτ

∥∥∥∥
p)

+ ∥f∥p).

Obviously, ∥λ∥p) ≤ K1 |λ| ,
∥∥∥∫ t

a f (τ) dτ
∥∥∥
p)

≤ K2∥f∥L1 ≤ K3∥f∥Lp−ε ≤ K4∥f∥p), because

Lp ⊂ L1 , Lp ⊂ Lp) ⊂ Lp−ε (K1,K2,K3,K4 are constants). Thus, ∥A (f, λ)∥Wp)
≤

K(|λ| + ∥f∥p)), i.e. A is a bounded operator. For v = λ +
∫ t
a f (τ) dτ we have v

′
= f (t).

Then v ∈ MW p)
1(a, b).

Let’s show that kerA = {0}. Assume A (u, λ) = 0, i.e. λ +
∫ t
a f (τ) dτ = 0. Differ-

entiating both sides, we get f(t) = 0 a.e. Consequently, λ = 0. Let ṽ =
(
v
′
, v (a)

)
for

∀v ∈ MW p)
1(a, b). Then ṽ ∈ Mp) (a, b)⊕C andA (ṽ) = v. This meansRA = MW p)

1(a, b),
where RA is a range of the operator A. By Banach inverse operator theorem, the inverse
of the operator A exists and is continuous. The lemma is proved.

We will significantly use the following theorem.

Theorem 1. ([26]) Let −2Reα + 1
p /∈ Z,1 < p < ∞. Then the system (1) forms a basis

for the space Mp)(−π, π),1 < p < ∞, if and only if d =
[
−2Reα+ 1

p

]
= 0 ([α] denotes

the integer part of α). The defect of the system (1) is d =
[
−2Reα+ 1

p

]
. When d < 0,

the system (1) is not complete, but minimal in Mp)(−π, π). When d > 0, the system (1)
is complete , but not minimal in Mp)(−π, π).

So the following theorem is true.

Theorem 2. Let −2Reα+ 1
p /∈ Z, 1 < p < ∞. Then the system

1 ∪
{
ei(n+αsignn)t

}
nϵZ

(5)

forms a basis for the space MW p)
1 (−π, π), 1 < p < ∞, if and only if

[
−2Reα+ 1

p

]
= 0.

Proof. Let
[
−2Reα+ 1

p

]
= 0. Let’s first prove that the system û−1 =

(
0
1

)
, û0 =(

iαeiαt

e−iπα

)
, û±n =

(
i(n+αsignn)ei(n+αsignn)t

e−iπ(n+αsignn)

)
, n = ±1,±2, . . . , forms a basis for the space

Mp) (−π, π) ⊕ C. To do so, it suffices to show that ∀û =
(
u
λ

)
∈ Mp) (−π, π) ⊕ C the

expansion

û = c−1û−1 + c0û0 +
∑
n ̸=0

c±n ûn
±

(6)

exists and is unique. This expansion is equivalent to two following expansions:
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u (t) = c0iαe
iαt +

∑
n̸=0

c±n i(n+αsignn)ei(n+αsignn)t, (7)

λ = −πc−1 + c0e
−iπα +

∑
n̸=0

c±n e
−iπ(n+αsignn). (8)

By Theorem 1 ([26]), the expansion (7) exists and is unique. As ∀ε ∈ (0, p−1), Lp) ⊂ Lp−ε

and
[
−2Reα+ 1

p

]
= 0 , by [16], Hausdorff-Young inequality is true for the system (1) in

grand-Lebesgue space Lp), too. That is, if 1 < p ≤ 2 , then|c0|q +
∑
n ̸=0

∣∣c±nn∣∣q
1/q

≤ M∥u∥p−ε ≤ M∥u∥p),

where p− ε and q are mutually conjugate numbers: 1
p−ε +

1
q = 1.

Using Hölder’s inequality, we obtain

|c0|+
∑
n̸=0

∣∣c±n ∣∣ = |c0|+
∑
n̸=0

1

|n|
∣∣c±nn∣∣ ≤ |c0|+

∑
n̸=0

1

|n|p

 1
p
∑

n ̸=0

∣∣c±nn∣∣q
 1

q

< ∞.

When 2 < p, we can find ε > 0 such that 2 < p− ε. Therefore,

Lp) ⊂ Lp−ε ⊂ L2.

Similarly we have

|c0|+
∑
n ̸=0

∣∣c±n ∣∣ = |c0|+
∑
n̸=0

1

|n|
∣∣c±nn∣∣ ≤ |c0|+

∑
n ̸=0

1

|n|2

 1
2
∑

n̸=0

∣∣c±nn∣∣2
 1

2

< ∞.

So, the series
∑

n̸=0 |c±n | is convergent. Therefore, the expansion (8) also exists and is
unique. This implies the existence and uniqueness of the expansion (6), i.e. the system

û−1 ∪ û0 ∪
{
û±n

}
, n = ±1,±2, . . .

forms a basis for the space Mp) (−π, π) ⊕ C. As the operator A is an isomorphism, the
system

{Aû−1} ∪ {Aû0} ∪
{
Aû±n

}
, n = ±1,±2, . . .

must form a basis for the space MW p)
1 (−π, π) . Simple calculations show that

Aû−1 = 1, Aû0 = eiαt,

Aû±n = ei(n+αsignn)t, n = ±1,±2, . . .
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That is, the system 1 ∪
{
ei(n+αsignn)t

}
nϵZ

forms a basis for the space MW p)
1 (−π, π).

Now let
[
−2Reα+ 1

p

]
> 0. For certainty, we assume

[
−2Reα+ 1

p

]
= 1, i.e. 1 <

−2Reα+ 1
p < 2.

Let’s rewrite the system (5) as 1 ∪
{
einteiαt; e−ikte−iαt

}
n≥0,k≥1

and multiply every

term of it by e−it/2. After making some transformations, we obtain:

e−it/2 ∪
{
eintei(α−

1
2
)t; e−ikte−i(α+ 1

2
)t
}
n≥0,k≥1

≡

≡ e−it/2 ∪
{
eitei(n−1)tei(α−

1
2
)t; e−ikte−i(α+ 1

2
)t
}
n≥0,k≥1

≡

≡ e−it/2 ∪
{
eintei(α+

1
2
)t; e−ikte−i(α+ 1

2
)t
}
n≥−1,k≥1

.

Denoting α
′
= α+ 1

2 , we can rewrite the last system as

e−it/2 ∪
{
einteiα

′
t; e−ikte−iα

′
t
}
n≥−1,k≥1

. (9)

As −2Reα
′
+ 1

p = −2Reα+ 1
p − 1, we have 0 < −2Reα

′
+ 1

p < 1. In this case, due to the
fact we have proved above, the system

1 ∪
{
einteiα

′
t; e−ikte−iα

′
t
}
n≥0,k≥1

, (10)

forms a basis for MW p)
1 (−π, π). It is clear that if we remove {1} from (10) and add the

functions e−it/2 and ei(α
′−1)t, we obtain the system (9). It is known from the theory of

bases that in this case the system (8) cannot be a basis.
Note that the basicity properties of the systems (9) and (5) are absolutely identical.

Because it is easy to verify that the operator of multiplying by e−it/2 is an automorphism

in MW p)
1 (−π, π). So, in case

[
−2Reα+ 1

p

]
= 1 the system (5) does not form a basis for

MW p)
1 (−π, π). The case of

[
−2Reα+ 1

p

]
> 1 can be treated similarly.

Let
[
−2Reα+ 1

p

]
< 0. For certainty, assume

[
−2Reα+ 1

p

]
= −1, i.e.−1 < −2Reα +

1
p < 0.

Let’s rewrite the system (5) as 1 ∪
{
einteiαt; e−ikte−iαt

}
n≥0,k≥1

and multiply every

term of it by eit/2 . Once again, after making some transformations, we obtain:

eit/2 ∪
{
eintei(α+

1
2
)t; e−ikte−i(α− 1

2
)t
}
n≥0,k≥1

≡

≡ eit/2 ∪
{
e−itei(n+1)tei(α+

1
2
)t; e−ikte−i(α− 1

2
)t
}
n≥0,k≥1

≡

≡ eit/2 ∪
{
eintei(α−

1
2
)t; e−ikte−i(α− 1

2
)t
}
n≥1,k≥1

.
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Denoting α
′′
= α− 1

2 , we can rewrite the last system as

eit/2 ∪
{
einteiα

′′
t; e−ikte−iα

′′
t
}
n≥1,k≥1

. (11)

As −2Reα
′′
+ 1

p = −2Reα+ 1
p + 1, we have 0 < −2Reα

′′
+ 1

p < 1. In this case, due to the
fact we have proved above, the system

1 ∪
{
einteiα

′′
t; e−ikte−iα

′′
t
}
n≥0,k≥1

(12)

forms a basis for MW p)
1 (−π, π). It is clear that if we remove {1} and eiα

′′
t from (12) and

add the function eit/2, we obtain the system (11). It is known from the theory of bases
that in this case the system (11) cannot be a basis.

Note that the basicity properties of the systems (11) and (5) are absolutely identical.
Because it is easy to verify that the operator of multiplying by eit/2 is an automorphism

in MW p)
1 (−π, π). So, in case

[
−2Reα+ 1

p

]
= −1 the system (5) does not form a basis

for MW p)
1 (−π, π). The case of

[
−2Reα+ 1

p

]
< −1 can be treated similarly. Thus, if the

condition
[
−2Reα+ 1

p

]
= 0 is not satisfied, then the system (5) cannot form a basis.

The theorem is proved.
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