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Mixed problem for systems of semilinear hyperbolic equa-
tions with anisotropic elliptic part nonlinear dissipations
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Abstract. In this paper we investigate the mixed problem for some class of quasi linear hyperbolic
equations with nonlinear dissipation and with anisotropic elliptic part. The theorems of local
solution and global solution are proved.
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1. Introduction

The solution of a series of technical problems is brought to non-stationary equations
with derivatives of a different order by space variables [1, 2]. For these equations, the
problem with initial conditions in time reduces to abstract hyperbolic equations in some
function spaces. Those terms of these equations in which only derivatives with respect to
space variables participate are called the anisotropic elliptic part.

In this paper, we study a mixed problem for systems of hyperbolic equations with an
anisotropic elliptic part in a certain cylinder whose base is a certain three-dimensional
cube. The existence and uniqueness of local and global solutions of this mixed problem
with Dirichlet boundary conditions are proved.

2. Statement of the problem and main results

Let us introduce the following notation: x = (x1, x2, x3) ∈ Π3,

x1(a) = (a, x2, x3), x2(a) = (x1, a, x3), x3(a) = (x1, x2, a).

Let us also introduce the notation:

⟨u, v⟩ =
∫
Π3

u (x) v (x) dx, u, v∈ L2 (Π3) , ∥u∥ =
√

⟨u, u⟩.
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Let us consider the mixed problem for systems of semilinear equations

u1tt +
∑3

k=1 (−1)L1kD2Λ1k
xk

u1 + |u1t|r1−1u1t = g1 (u1, u2)

u2tt +
∑3

k=1 (−1)L2kD2Λ2k
xk

u2 + |u2t|r2−1u2t = g2 (u1, u2)

}
(1)

with boundary conditions

Dβk
xk
u
1
(t, xk (0)) = Dβk

xk
u1 (t, xk (1)) = 0, βk = 0, 1, ...,Λik − 1, i = 1, 2, k = 1, 2, 3, (2)

and initial conditions

ui (0, x) = φi (x) , uit (0, x) = ψi (x) , x ∈ Π3, i = 1, 2. (3)

where Λik ∈ N, i = 1, 2, k = 1, 2, 3, g1 and g2 are the following non-linear functions

g1 (u1, u2) = a1|u1 + u2|p1+p2 (u1 + u2) + b1|u1|p1−1|u2|p2+1u1,

g2 (u1, u2) = a2|u1 + u2|p1+p2 (u1 + u2) + b2|u1|p1+1|u2|p2−1u2,

a1, a2, b1, b2, p1, p2 are real constants and

p1 ≥ 0, p2 ≥ 0. (4)

We introduce the notation:
∣∣∣−→Λi

−1
∣∣∣ = ∑3

k=1
1

Λik
, where

−→
Λi=(Λi1,Λi2,Λi3). Let us denote

the anisotropic Sobolev space by W
−→
Λi
2 , i.e.

W
−→
Λi
2 =W

−→
Λi
2 (Π3) =

{
v : v,DΛik

xk
v ∈ L2(Π3)

}
,

∥v∥
W

−→
Λi
2

=

[
∥v∥2L2(Π3)

+

n∑
k=1

∥∥DΛik
xk
v
∥∥2
L2(Π3)

]1/2

.

Denote by Ŵ
−→
Λi
2 the next subspace of W

−→
Λi
2 :

Ŵ
−→
Λi
2 =

{
u : u ∈W

−→
Λi
2 , Dβk

xk
u(t, xk(0)) = Dβk

xk
u(t, xk(1)) = 0, βk = 0, 1, ...,Λik − 1

}
.

Let X be some Banach space and denote by C ([0, T ] ;X) the set of continuous functions
acting from [0, T ] to X: ∥u (t)∥C([0,T ];X) = max

0≤t≤T
∥u (t)∥X .

Denote by Ck ([0, T ] ;X) the set of continuously differentiable functions of order k
acting from [0, T ] to X: ∥u (t)∥Ck([0,T ];X) =

∑k
i=0

∥∥u(i) (t)∥∥
C([0,T ];X)

.

Denote by Cw ([0, T ] ;X) the set of weakly continuous functions acting from [0, T ] to
X.

Let us define the following spaces of functions

H1
T = C

(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
∩ C1 ([0, T ] ;L2 (Π3)× L2 (Π3)) ,
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H1
T,∞ =

{
u : u ∈ L∞

(
0, T ; ŴΛ1

2 × ŴΛ2
2

)
, ut∈ L∞ (0, T ;L2 (Π3)× L2 (Π3))

}
,

H2
T,w = {u : u ∈ Cw

(
[0, T ] ; Ŵ 2Λ1

2 × Ŵ 2Λ2
2

)
, ut ∈ Cw

(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
,

utt ∈ Cw ([0, T ] ;L2 (Π3)× L2 (Π3))} ,

H2
T,∞ =

{
u : u ∈ L∞

(
0, T ; Ŵ 2Λ1

2 × Ŵ 2Λ2
2

)
, ut ∈ L∞

(
0, T ; ŴΛ1

2 × ŴΛ2
2

)
utT ∈ L∞ (0, T ;L2 (Π3)× L2 (Π3))} .

It is clear from the expression of the functions gi(u1, u2), that

|gi (u1, u2)| ≤ c
[
|u1|p1+p2+1 + |u2|p1+p2+1

]
, i = 1, 2, c > 0. (5)

A strong solution of problem (1) - (3) is a pair of function s (u1 (·) , u2 (·)) ∈ H2
T,∞,

such that for all (η1(·), η2(·)) ∈ ŴΛ1
2 × ŴΛ2

2 the following equalities hold

a)
d

dt
⟨u1t (t, ·) , η1 (·)⟩+

3∑
k=1

〈
DΛ1k

xk
u1 (t, ·) , DΛ1k

xk
η1 (·)

〉
+

+
〈
|u1t (t, ·)|r1−1u1t (t, ·) , η1 (·)

〉
= ⟨g1(u1 (t, ·) , u2 (t, ·) , η1 (·)⟩ , (6)

d

dt
⟨u2t (t, ·) , η2 (·)⟩+

3∑
k=1

〈
DΛ2k

xk
u2 (t, ·) , DΛ1k

xk
η2 (·)

〉
+

+
〈
|u2t (t, ·)|r1−1u2t (t, ·) , η2 (·)

〉
= ⟨g2(u1 (t, ·) , u2 (t, ·) , η2 (·)⟩ ,

almost all t ∈ (0, T ), (7)

b) lim
t→+0

∥∥∥∥∥
3∑

k=1

DΛik
xk

[ui (t, ·)− φi (·)]

∥∥∥∥∥
L2(Π3)

= 0, i = 1, 2, (8)

c) lim
t→+0

∫
Π3

3∑
k=1

DΛik
xk

[uit (t, x)− ψi (x)]D
Λik
xk
η
i
(x) dx = 0, i = 1, 2. (9)

By a weak solution to problem (1) - (3) we mean the functions (u1 (·) , u2 (·)) ∈ H1
T,∞

such that for all (η1 (·) , η2 (·)) ∈ H1
T,∞, ηi (x, T ) = 0, i = 1, 2 the following equalities hold

a)

∫ T

0

[
⟨uit (t, ·) , ηit (t, ·)⟩+

3∑
k=1

〈
DΛ1k

xk
ui (t, ·) , DΛ1k

xk
ηi (·)

〉]
dt+

+

∫ T

0

〈
|uit (t, ·)|ri−1uit (t, ·) , ηi (t, ·)

〉
dt =
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=

∫ T

0
⟨gi (u1 (t, ·) , u2 (t, ·)) , ηi (t, ·)⟩ dt+ ⟨ψi (·) , ηi (0, ·)⟩ ,i = 1, 2, (10)

b) lim
t→0

⟨ui (·, t)− ϕi (·) , η1 (t, ·)⟩
Ŵ

Λi
2

= 0, i = 1, 2. (11)

It is known that under the condition

min
{∣∣∣Λ−1

1

∣∣∣ , ∣∣∣Λ−1
2

∣∣∣} > 2, (12)

the embedding

ŴΛi
2 ⊂ C(Π3), i = 1, 2, (see [3]) (13)

is valid. The following theorems on the existence of a local solution of the problem (1) -
(3) are true.

Theorem 1. Suppose that the conditions (4), (5) and (12) are satisfied. Then for any

initial data (ϕ1, ϕ2) ∈ Ŵ 2Λ1
2 × Ŵ 2Λ2

2 , (ψ1, ψ2) ∈ ŴΛ1
2 × ŴΛ2

2 there exists T ′ > 0 such that
the problem (1) - (4) has a unique solution (u1, u2) ∈ H2

T ′ ,w
.

In addition, if Tmax = maxT ′ is the length of the maximum interval of the existence
of this solution, then one of the following statements is true:

lim
t→Tmax

2∑
i=1

[
∥uit(t, ·)∥2 + ∥u1(t, ·)∥

2

Ŵ
Λi
2

]
= +∞; (14)

or
Tmax = +∞. (15)

Theorem 2. Suppose that the conditions (4), (5) and (12) are satisfied. Then for any

initial data (ϕ1, ϕ2) ∈ ŴΛ1
2 × ŴΛ2

2 , (ψ1, ψ2) ∈ L2(Π3) × L2(Π3) there exists T ′ > 0 such
that the problem (1) - (3) has a unique solution (u1, u2) ∈ H1

T ′ ,w
.

In addition, if Tmax = maxT ′ is the length of the maximum interval of the existence
of this solution, then one of the relations (14) and (15) is true.

In some cases, for any T > 0, the local solutions defined by Theorem 1 can be dis-
tributed over the entire [0, T ]×Π3 region. According to Theorem 1, this is possible if the
following a priori estimate is true for local solutions

2∑
i=1

∥uit(t, x)∥2 +
∥∥∥∥∥

3∑
k=1

DΛik
xk
ui(t, x)

∥∥∥∥∥
2
 ≤ c, 0 ≤ t ≤ T (16)

We get this estimate if

λ =
a1 (p1 + 1)

b1
=
a2 (p2 + 1)

b2
, (17)

ai ≤ 0, bi ≤ 0, i = 1, 2. (18)

When these conditions are met, the following theorem on the global solvability of the
problem (1) - (3) is proved.
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Theorem 3. Suppose that the conditions (4) , (5), (17) and (18) are satisfied, then for any

T > 0, (ϕ1, ϕ2) ∈ ŴΛ1
2 ×ŴΛ2

2 and (ψ1, ψ2) ∈ L2 (Π3)×L2 (Π3) the problem (1) - (3) has a

unique solution (u1 (·) , u2 (·)) ∈ C
(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
∩ C1 ([0, T ] ;L2 (Π3)× L2 (Π3)) .

3. Proof of Theorem 1

We will prove the theorem using Galyorkin’s method. Let ej (x) , j = 1, 2, ...-denote
the solutions of the following problem:

3∑
k=1

(−1)ΛikD2Λik
xk

eij (x) = λijeji (x) , x ∈ Π3,

Dβk
xk
e
j
(xk(0)) = Dβk

xk
ej(xk(1)) = 0, βk = 0, 1, ...,Λik − 1, k = 1, ..., n, i = 1, 2.

In other words, eij (x) , x ∈ Π3, j = 1, 2, i = 1, 2, ... are eigenfunctions of the operator
−→
L =

∑3
k=1 (−1)ΛikD2Λik

xk
with the Dirichlet boundary condition (see [4, 5]).

We approximate the functions φi (x) and ψi (x) and the functions φim (x) and ψim (x),
i = 1, 2, m = 1, 2, ... respectively. So that,

ϕim =

m∑
r=1

airmeir (x) → ϕi, in Ŵ
2Λi
2 as m→ ∞, i = 1, 2, (19)

ψim =
m∑
r=1

birmeir (x) → ψi, in Ŵ
Λi
2 as m→ ∞, i = 1, 2. (20)

We are looking for approximate solutions of problem (1) - (3) as follows

uim (t, x) =

m∑
r=1

Cirm (t) eir (x), i = 1, 2,

so that the functions Cirm (t) , i = 1, 2, r = 1, ...,m are the solutions of the following
Cauchy problem for the system of ordinary differential equations

⟨uimtt (t, x) , eir (x)⟩+
3∑

k=1

〈
DΛik

xk
uim(t, x), DΛik

xk
eir (x)

〉
+

+

∫
Π3

|uimt (t, x)|
r1−1uimt (t, x) eir (x) dx = ⟨g1 (u1m (t, x) , u2m (t, x)) , eir (x)⟩ ,

r = 1, . . . ,m, i = 1, 2, (21)

uim (0, x) = ϕim (x) , uimt (0, x) = ψim (x) , x ∈ Πn, i = 1, 2. (22)

According to Cauchy-Picard theorem [6], on the existence of a solution of the Cauchy
problem for a system of ordinary differential equations, problem (21) - (22) has a solution
in some half-interval [0, tm).
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Multiplying both side of each equation (21) by the function C
′
ir (t), and summing up

the resulting equalities, we obtain

⟨uimtt (t, x) , uimt (t, x)⟩+
3∑

k=1

〈
DΛik

xk
uim(t, x), DΛik

xk
uimt(t, x)

〉

+

∫
Π3

|uimt (t, x)|
r1+1dx =

= ⟨gi (u1m (t, x) , u2m (t, x)) , uimt (t, x)⟩ , i = 1, 2. (23)

It is obvious that

⟨uimtt (t, x) , uimt (t, x)⟩ =
1

2

d

dt
∥uimt (t, ·)∥

2, i = 1, 2, (24)

3∑
k=1

〈
DΛik

xk
u1m(t, x), DΛik

xk
u1mt(t, x)

〉
=

1

2

d

dt

3∑
k=0

∥∥DΛik
xk
uim (t, ·)

∥∥2, i = 1, 2. (25)

Summing equalities (23) and taking into account (24) and (25) , we obtain:

d

dt

2∑
i=1

[
∥uimt (t, ·)∥

2 +
3∑

k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2]+
2∑

i=1

∫
Πn

|uimt (t, x)|
ri+1dx =

=
2∑

i=1

∫
Π3

gi (u1m (t, x) , u2m (t, x)) , uimt (t, x)dx. (26)

Using the Hölder’s and Young’s inequalities, we obtain the following:∣∣∣∣∫
Π3

gi (u1m (t, x) , u2m (t, x)) , uimt (t, x)dx

∣∣∣∣ ≤
≤

(
1

(ri + 1) ε

) 1
ri
∫
Π3

|gi (u1m (t, x) , u2m (t, x))|
ri+1

ri dx+ ε

∫
Π3

|uimt (t, x)|
ri+1dx.

Using (5) we have ∫
Π3

|gi (u1m (t, x) , u2m (t, x))|
ri+1

ri dx ≤

≤ C

[∫
Π3

|u1|
(p1+p2+1)

ri+1

ri dx+

∫
Π3

|u2|
(p1+p2+1)

ri+1

ri dx

]
≤

≤ C

[
∥u1∥

(p1+p2+1)
ri+1

ri

C(Π3)
+ ∥u2∥

(p1+p2+1)
ri+1

ri

C(Π3)

]
≤ C

2∑
i=1

∥ui∥
(p1+p2+1)

ri+1

ri

Ŵ
Λi
2

. (27)
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It follows from (26) and (27) that

d

dt

2∑
i=1

[
∥uimt (t, ·)∥

2 +
3∑

k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2]+ (1− ε)
2∑

i=1

∫
Π3

|uimt (t, x)|
ri+1dx ≤

≤ C

2∑
i=1

∥ui∥
(p1+p2+1)

ri+1

ri

Ŵ
Λi
2

. (28)

Hence, for

y = y (t) =

2∑
i=1

[
∥uimt (t, ·)∥

2 +

3∑
k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2]
we obtain the following inequality

y
′ ≤ C

2∑
i=1

y
(p1+p2+1)

ri+1

ri .

From here we obtain the following inequality

z′ ≤ C1z
p, z (0) = z0 = y0 + 1, (29)

where z = z (t) = y (t) + 1, p = (p1 + p2 + 1) ,max
{

r1+1
r1

, r2+1
r2

}
.

From inequality (29) we obtain that

y ≤ y0 + 1[
1− c1 (p− 1) (y0 + 1)p−1 t

] 1
p−1

− 1.

It follows that
y (t) ≤ 2 (y0 + 1) , 0 ≤ t ≤ T ′, (30)

where T ′ = 1
2c1(p−1)(y0+1)p−1 .

From (30) we obtain the following a priori estimate:

2∑
i=1

[
∥uimt (t, ·)∥

2 +

3∑
k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2] ≤

≤ c1

2∑
i=1

[
∥ψim∥2 +

n∑
k=0

∥∥DΛik
xk
ϕim

∥∥2], 0 ≤ t ≤ T
′
. (31)

According to (19), (20), we get

2∑
i=1

[
∥ψim∥2 +

3∑
k=0

∥∥DΛik
xk
ϕim

∥∥2] ≤ c2. (32)
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From (31) and (32) it follows that

2∑
i=1

[
∥uimt (t, ·)∥

2 +
3∑

k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2] ≤ c3, (33)

where c3 > 0 is a constant independent of m.
It follows from (28) and (33) that

2∑
i=1

∫ t

0

∫
Π3

|uims (s, x)|
ri+1dxds ≤ c4, 0 ≤ t ≤ T, (34)

where ci > 0, i = 1, 2, 3 are constants that do not depend on m.
Multiplying both sides of (21) by the function C

′′
ik (t), summing over k = 1 to m, we get

that:
∥uimtt (t, ·)∥

2 ≤ ∥uim (t, ·)∥
Ŵ 2

−→
Λ

2

· ∥uimtt(t, x)∥+

+

(∫
Π3

|uimt (t, x)|
2r1dx

) 1
2

∥uimtt(t, x)∥+

+

(∫
Π3

|gi (u1m (t, x) , u2m (t, x))|2dx
) 1

2

∥uimtt(t, x)∥ ≤

≤ ∥uim (t, ·)∥
Ŵ 2

−→
Λ

2

· ∥uimtt(t, x)∥+

+

(
max
x∈Π3

⌈uimt (t, x)⌉
)r1

∥uimtt(t, x)∥+

+max
x∈Π3

⌈gi (u1m (t, x) , u2m (t, x))⌉ ∥uimtt(t, x)∥ ≤

≤ δ ∥uimtt(t, x)∥+ cδ ∥uim (t, ·)∥
Ŵ 2

−→
Λ

2

.

From this relation it follows that

∥uimtt (0, ·)∥ ≤ C∥ϕim∥
Ŵ 2

−→
Λ

2

, i = 1, 2. (35)

We differentiate both parts (21) - by t. Then we multiply each of the obtained equations
by cikmtt (t) and add them. Then we will get the following equality

⟨uimttt (t, ·) , u1mtt (t, ·)⟩+
3∑

k=1

〈
DΛik

xk
u1mt(t, x), D

Λik
xk
u1mtt(t, x)

〉
+

+

∫
Π3

∂

∂t

(
|uim (t, x)|ri−1uim (t, x)

)
uimtt (t, x) dx =

=

2∑
j=1

〈
giuj (u1m (t, x) , u2m (t, x))ujmt (t, x) , ujmtt (t, x)

〉
. (36)
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Since β (s) = |s|γ−1 s is a monotonically increasing function, therefore∫
Π3

∂

∂t

(
|uim (t, x)|ri−1uim (t, x)

)
uimtt (t, x) dx ≥ 0. (37)

If we evaluate the right side of the equality (36) from above, we get that:

|Jj | =
∣∣〈giuj (u1m (t, x) , u2m (t, x))ujmt (t, x) , ujmtt (t, x)

〉∣∣ ≤
≤

(∫
Π3

∣∣giuj (u1m (t, x) , u2m (t, x))
∣∣2|ujmt (t, x)|

2dx

) 1
2
(∫

Π3

|ujmtt (t, x)|
2dx

) 1
2

. (38)

In view of the embedding theorems, using (12) , we obtain that giuj (u1m (t, x) , u2m (t, x))

∈ C
(
Π3

)
. That is why

|Jj | = sup
x∈Π3

∣∣giuj (u1m (t, x) , u2m (t, x))
∣∣ (∫

Π3

|ujmt (t, x)|
2dx

) 1
2
(∫

Π3

|uimtt (t, x)|
2dx

) 1
2

≤

≤ c

 sup

x∈Π̂3

|u1m (t, x)|p1+p2 + sup

x∈Π̂3

|u2m (t, x)|p1+p2

 ∥uimt (t, ·)∥ · ∥uimtt (t, ·)∥ ≤

≤ C
2∑

i=1

∥uim (t, ·)∥
Ŵ

Λi
2

∥uimt (t, ·)∥ ∥uimtt (t, ·)∥ . (39)

Taking into account (37) and (39) in (36), we obtain the inequality

∂

∂t

2∑
i=1

[
∥uimtt (t, ·)∥

2 + ∥uimt (t, ·)∥
Ŵ

Λi
2

]
≤ c

2∑
i=1

∥uimtt (t, ·)∥
2. (40)

From here we get
2∑

i=1

{∥uimtt (t, ·)∥
2 + ∥uimt (t, ·)∥

Ŵ
Λi
2

} ≤ c. (41)

If we multiply both side (21) by λjcjkm (t, ·) and sum over j = 1, ...,m and k = 1, 2, 3, we
get the following equality〈

uimtt (t, x) ,
3∑

k=1

D2Λik
xk

u1m(t, x)

〉
+

〈
3∑

k=1

D2Λik
xk

uim(t, x),
3∑

k=1

D2Λik
xk

uim(t, x)

〉
+

+

∫
Π3

|uimt (t, x)|
ri−1uimt (t, x) ,

3∑
k=1

D2Λik
xk

uim(t, x)dx =

=

〈
gi (u1m (t, x) , u2m (t, x)) ,

3∑
k=1

D2Λik
xk

uim(t, x)

〉
. (42)
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From here, using the Hölder inequality, we obtain that∥∥∥∥∥
3∑

k=1

D2Λik
xk

uim(t, x)

∥∥∥∥∥
2

≤ ∥uimtt (t, ·)∥

∥∥∥∥∥
3∑

k=1

D2Λik
xk

uim(t, x)

∥∥∥∥∥+
+

∥∥∥∥∥
3∑

k=1

D2Λik
xk

uim(t, x)

∥∥∥∥∥
(∫

Π3

|u1mt (t, x)|
2r1dx

)1/2

+

+

∥∥∥∥∥
3∑

k=1

D2Λik
xk

u1m(t, x)

∥∥∥∥∥
(∫

Π3

|g1 (u1m (t, x) , u2m (t, x))|2dx
)1/2

.

Taking into account a priori estimates (41) from here we get∥∥∥∥∥
3∑

k=1

D2Λik
xk

u1m(t, ·)

∥∥∥∥∥ ≤ c. (43)

By virtue of (41) - (43) there is a subsequence of {u1mk
, u2mk

} which we will denote by
{u1m, u2m}, where

uim → ui *-weak in L∞

(
0, T ; Ŵ 2Λi

2

)
, i = 1, 2, (44)

uimt → uit *-weak in L∞

(
0, T ; ŴΛi

2

)
, i = 1, 2. (45)

uimt → uit *-weak in Lri+1 ((0, T )×Π3) , i = 1, 2, (46)

uimtt → uitt *-weak in L∞ (0, T ;L2 (Π3)) , i = 1, 2. (47)

It follows from (44) and (45) that

ui ∈ C
(
[0, T ] ; ŴΛi

2

)
, i = 1, 2. (48)

On the other hand, it is known that if u1, u2 ∈ C
(
[0, T ] ; ŴΛi

2

)
∩L∞

(
0, T ; Ŵ 2Λi

2

)
, where

( u1(·), u2(·)) is a solution of the problem (1)-(3) then u1, u2 ∈ Cw

(
[0, T ] ; Ŵ 2Λi

2

)
(see

[4, 7]). Similarly, we can show that

u1t ∈ Cw

(
[0, T ] ; ŴΛi

2

)
and uitt ∈ Cw ([0, T ] ;L2 (Π3)) . (49)

If in (19) we pass to the limit as m→ ∞, then we obtain that the functions (u1, u2) satisfy
the systems (1).

According to (48), (49), these functions also satisfy the initial conditions (2), (3).
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4. Proof of Theorem 2

We choose such functions ϕik ∈ Ŵ 2Λi
2 , ψik ∈ ŴΛi

2 , i = 1, 2, k = 1, 2, ... that

ϕik → ϕi in ŴΛi
2

ψik → ψi in L2 (Π3)

}
(50)

as k → ∞.

Then, according to Theorem 1, there exist functions (u1r, u2r) ∈ H2
Tr
, r = 1, 2, ... such

that

u1rtt +
∑n

k=1 (−1)Λ1kD2Λ1k
xk

u1r + |u1rt|r1−1u1rt = g1 (u1r, u2r)

u2rtt +
∑n

k=1 (−1)Λ2kD2L2k
xk

u2r + |u2rt|r2−1u2rt = g2 (u1r, u2r)

}
, (51)

Dβk
xk
u
1r
(t, xk (0)) = Dβk

xk
u1r (t, xk (1)) = 0, βk = 0, 1, . . . ,Λik − 1, i = 1, 2,

k = 1, ..., n, r = 1, 2, ..., (52)

uir (0, x) = ϕir (x) , uirt (0, x) = ψir (x) , x ∈ Π3, i = 1, 2, r = 1, 2, ... (53)

are satisfied. In addition, the following a priori estimate is true

2∑
i=1

∥uirt (t, ·)∥2 +
∥∥∥∥∥

3∑
k=1

DLik
xk
uir(t, x)

∥∥∥∥∥
2
 ≤ cr, 0 ≤ t ≤ Tr, (54)

∫ t

0

∫
Π3

|uirs |
ri+1dxds ≤ cr, (55)

where cr = c

(∑2
i=1

[∥∥∥∑3
k=1D

Λik
xk
ϕir

∥∥∥2 + ∥ψir∥2
])

,

Tr =
1

2 (p− 1)

(∑2
i=1

[∥∥∥∑3
k=1D

Λik
xk ϕir

∥∥∥2 + ∥ψir∥2
]
+ 1

) . (56)

By virtue of (50)

cr ≤ c, r = 1, 2, ..., (57)

where cr depends only on the expression
∑2

i=1

[∥∥∥∑3
k=1D

ik
xk
ϕir

∥∥∥2 + ∥ψir∥2
]
.

By virtue of (56) and (57) there exists N0 ∈ {1, 2, ...} such that for r ≥ N0 the following
inequalities hold

Tr ≥ T =
1

4 (p− 1)

(∑2
i=1

[∑2
i=1

[∥∥∥∑3
k=1D

Λik
xk ϕi

∥∥∥2 + ∥ψi∥2
]
+ 1

]
+ 1

) .
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Hence the sequence {uir (t, ·) , uirt (t, ·)} is bounded in the space

L∞

(
0, T ; ŴΛi

2

)
×L∞ (0, T ;L2 (Π3)) .

Then from this sequence, we can choose subsequence which we will again denote by
{u1r (t, ·) , u2r (t, ·)}, such that as k → ∞

uir → ui *-weakly in L∞

(
0, T ; ŴΛi

2

)
, i = 1, 2; (58)

uirt → uit *-weakly in L∞ (0, T ;L2 (Π3)) , i = 1, 2; (59)

uikt → uit *-weakly in Lri+1 ([0, T ]×Π3) , i = 1, 2. (60)

From (58) and (59) it follows that

uik → ui in C ([0, T ] ;L2 (Π3)) , i = 1, 2. (61)

Let us investigate whether the function gi (u1r, u2r) is converted to the function gi (u1, u2) ,
i = 1, 2.

Using Lagrange’s Mean Value Theorem, we obtain that

Jk = ∥g1 (u1r, u2r)− g1 (u1, u2)∥2 =

=

∫
Π3

∣∣∣∣∫ 1

0
(g1u1 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2)) (u1r − u1)+

+g2u2 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2)) (u2r − u2)) dτ |2dx.

According to the embedding theorem, the following relations are true.

0 ≤ Jk ≤ sup
x∈Π3

|g1u1 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2))|2∥u1r − u1∥2+

+ sup
x∈Π3

|g1u2 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2))|2∥u2r − u2∥2 ≤

≤ c
(
∥u1∥C(Πn), ∥u2∥C(Πn)

) [
∥u1r − u1∥2 + ∥u2r − u2∥2

]
≤

≤ c

(
∥u1∥

Ŵ
Λ1
2

, ∥u2∥
Ŵ

Λ2
2

)[
∥u1r − u1∥2 + ∥u2r − u2∥2

]
.

Then it follows from (61) that
lim
k→∞

Jk = 0. (62)

Thus, according to the relations (58) - (62), if we pass to the limit in the equation (51),
we will get that , (u1, u2) satisfies the problem (1) - (3), so that

ui (·) ∈ L∞

(
0, T ; ŴLi

2

)
, uit (·) ∈ L∞ (0, T ;L2 (Π3)) ∩ Lri+1 ((0, T )×Π3) , i = 1, 2,
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It follows that hi(t, x) = g1 (u1, u2)− |u1t|r1−1u1t ∈ L2 ((0, T )×Π3) , i = 1, 2.
It is obvious that the functions u1, u2 are a solution of the mixed problem

uitt +

3∑
k=1

(−1)ΛikD2Λik
xk

ui = hi(t, x),

Dβk
xk
u
1
(t, xk (0)) = Dβk

xk
u1 (t, xk (1)) = 0, βk = 0, 1, ...,Λik − 1, i = 1, 2, k = 1, ..., n,

ui (0, x) = ϕi (x) , uit (0, x) = ψi (x) , x ∈ Π3, i = 1, 2.

It is known that if the solutions of the problem (1) - (3) satisfy the condition

ui (·) ∈ L∞

(
0, T ; ŴΛi

2

)
, uit (·) ∈ L∞ (0, T ;L2 (Π3)) , i = 1, 2,

then

ui (·) ∈ C
(
[0, T ]; ŴΛi

2

)
, uit (·) ∈ C1 ([0, T ];L2 (Π3)) , i = 1, 2.

(see [4, 7]).

5. The existence of a global solution

In some cases, for any T > 0, the local solutions defined by Theorem 1 can be dis-
tributed over the entire [0, T ]×Π3 region. According to Theorem 1, this is possible if the
following a priori estimate is true for local solutions.

2∑
i=1

∥uit(t, x)∥2 +
∥∥∥∥∥

3∑
k=1

DΛik
xk
ui(t, x)

∥∥∥∥∥
2
 ≤ c, 0 ≤ t ≤ T. (63)

We get this estimate if

λ =
a1 (p1 + 1)

b1
=
a2 (p2 + 1)

b2
, (64)

ai ≤ 0, bi ≤ 0, i = 1, 2. (65)

Theorem 4. Suppose that conditions (4), (12), (64) and (65) are satisfied, then for any

T > 0, (ϕ1, ϕ2) ∈ ŴΛ1
2 ×ŴΛ2

2 and (ψ1, ψ2) ∈ L2 (Π3)×L2 (Π3) the problem (1) - (3) has a

unique solution (u1 (·) , u2 (·)) ∈ C
(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
∩ C1 ([0, T ] ;L2 (Π3)× L2 (Π3)) .

Proof of the Theorem 4. Assume that (u1 (·) , u2 (·)) is a local solution of the
problem (1)-(3) in the domain [0, Tmax] × Π3 defined by Theorem 2. Denote b′i = −bi,
i = 1, 2, and multiply both sides of equation (1) by the function pi+1

b′i
uit (t, x).

Integrating the resulting equality over the area [0, T ]×Π3, we obtain

pi + 1

b′i

∫ t

0

∫
Π3

uiss (s, x)uis (s, x) dxds+
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+
pi + 1

b′i

∫ t

0

∫
Π3

3∑
k=1

(−1)ΛikD
2Λik

xk
ui (s, x)uis (s, x) dxds+

+
ai (pi + 1)

b′i

∫ t

0

∫
Π3

|uis (s, x)|
ri+1dxds =

=
pi + 1

b′i

∫ t

0

∫
Π3

gi (u1 (s, x) , u2 (s, x))uis (s, x) dxds,

if we use integration by parts and sum the resulting equalities, we get the following:

2∑
i=1

pi + 1

2b′i

[∫
Π3

|uit (t, x)|
2dx+

∫
Π3

∣∣DΛik
xk
ui (s, x)

∣∣2dx+
+ 2

∫ t

0

∫
Π3

|uis (s, x)|
ri+1dxds

]
+

+

2∑
i=1

pi + 1

bi

∫ t

0

∫
Π3

gi (u1 (s, x) , u2 (s, x))uis (s, x) dxds =

=

2∑
i=1

pi + 1

2b′i

[∫
Π3

|ψi (x)|2dx+

n∑
k=1

∫
Π

∣∣DΛik
xk
ϕi (x)

∣∣2dt]. (66)

On the other hand, if we use the expression of the functions g1 (u1, u2) ,g2 (u1, u2) and the
condition (64) , we get that

2∑
i=1

pi + 1

bi

∫ t

0

∫
Π3

gi (u1 (s, x) , u2 (s, x))uis (s, x) dxds =

=
λ

p1 + p2 + 2

∫
Π3

|u1 + u2|p1+p2+2dx+

∫
Π3

|u1|p1+1|u2|p2+1dx−

− λ

p1 + p2 + 2

∫
Π3

|ϕ1 + ϕ2|p1+p2+2dx−
∫
Π3

|ϕ1|p1+1|ϕ2|p2+1dx. (67)

Considering (65) and (67) in (66), we obtain the following:

2∑
i=1

pi + 1

2b′i

[∫
Π3

|uit (t, x)|
2dx+

∫
Π3

∣∣DΛik
xk
ui (s, x)

∣∣2dx+
+ 2

∫ t

0

∫
Π3

|uis (s, x)|
ri+1dxds+

λ

p1 + p2 + 2

∫
Π3

|u1 + u2|p1+p2+2dx+

∫
Π3

|u1|p1+1|u2|p2+1dx

]
=

=
2∑

i=1

pi + 1

2b′i

[∫
Π3

|ψi (x)|2dx+
n∑

k=1

∫
Π3

∣∣DΛik
xk
ϕi (x)

∣∣2dt]+
+

λ

p1 + p2 + 2

∫
Πn

|ϕ1(x) + ϕ2(x)|p1+p2+2dx+

∫
Π3

|ϕ1(x)|p1+1|ϕ2(x)|p2+1dx.

From this we obtain the a prior estimate (1).
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