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On the Generalised Hardy Inequality and the
Best Constant

Sayali Mammadli

Abstract. Let Q be a ball B(0,R) in R" and p > 1. Using a different approach we
prove the generalized Hardy inequality involving the distance to boundary

Hdist(x,GQ)O‘_lu(x)HLP(Q) < Cp||dist(x, 02)*Vu()| 10,1,

where o < (p—1)/p and u € Wpl(Q)
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1. Introduction

In this paper, we show an elementary approach to prove the weighted
Sobolev inequality

[dist (z, 02)* ' f ()| o (o) < C|ldist(, 02)*V f ()| Lo () (1)

for any f € Wpl(Q), where —oo < a < 1/p/;1 < p < oo, the domain 2 Cc R"
is bounded and satisfies some conditions, dist(z,d) is a distance from the
point = € Q to the boundary 92 of domain 2. The space WZ} (Q) is a closure
of C3(Q), continuously differentiable functions vanishing on the 92, in the
norm

1£1 = 1f ey + IV fll e -

Such inequalities take its beginning from the work by J. Necas [22], who
proposed the inequality

/Q (% dr < Cnp(Q) /Q IV f|P dz @)
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for any n dimensional bounded Lipschitz domain € for p > 1, where Vf
denotes the gradient of function f.

In general, inequality (2) does not hold in the non-regular domains. The
equality is also not achieved (see, [23] about this and historical background).
The inequality (2) gives room for various improvements. See, [4, 5, 18, 20] for
the inequality (2) and the best constant C), = p/(p — 1) for that on convex
domains . Note that, the Hardy inequalities are derived for the different
function spaces. For that we refer to [6, 9, 10, 11, 12, 14, 15] on variable
exponent Lebesgue space settings (see also e.g. [1, 2, 3, 13, 16, 17, 19] for
applications to pde’s ).

On the background of this inequalities, the following observation is inter-
esting (see [9]). The Hardy inequality on finite interval (0,1) reads

/Ol <i, /Oxf(t)dt>p dr < <pf1>p/olf(x)pdmj 5

where f is a positive measurable function on (0,7) and p > 1. The constant

(-£-)P is sharp. After the change of variables y = [ — x the left hand side of

p—1
(3) equals

/Ol <l_1y /ylg<8) ds)p v /ol (l—ly Olyf<t) dt>p dy
[ ([ s a

where ¢g(t) = f(l —t). Changing again the variable ¢ = [ — s on the right hand
side (3), it is equal to

<pz>p/olf<”pdt= (pﬁl)p/()lf(l—sws - (}L)p/olg(s)pds

Therefore (3) yields that

[ fons) -Gy fores

Since f is arbitrary, we get the inequality (4) for any measurable function g
on interval (0,1).

Let u be an absolutely continuous function on (0, 1) satisfying u(0) = u(l) =
0. Then
u(z) _ u(z)

mZT,xE(O,l/2) and @:l—x

sz e (1/2,1),
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where d(z) = min(z,l — ), z € (0,1). Now,

w(@) _ u(z) u(z)

@) TXo,z/z(x) +o xXl/Q,l(x)a

where Y(,) denote a characteristic function of interval (a,b). Therefore, and
applying (3), (4) we get the inequality

Hu(m)/d(x)”ip(o’l) = HU(H?)/OUIIIZP(O,;/Q) + [Ju(z) /(1 — x)Hip(l/g,l)
< (p/(p— 1))p <”U (v )HLp (0,1/2) + Hu( )”Lp (1/2.0) ) = (p/(p — 1))p Hu (z )HLP 0,0)°

We get the inequality

lu(@)/d(@)|| Lo,y < P/ (P — DIV (@) Lo (01) (5)
for all absolutely continuous function on interval (0,1), with u(0) = u(l) = 0.

Lemma 1. Let f(t) be a positive measurable function on (0,1). Let p >
l,a< 1%7 n > 0. Then it holds the inequality

/Ol (/zl f(t) dt>p (1 — 2)(@Dpgn=1 gy

< (p_f’jap) / 0 ) () d (6)

Proof. Using the change of variables | — z = z we get

/Ol </xlf(t)dt>p(l—x)(a Dpyn—1 g
i /Ol < llz 1 dt)p 0TIl = 2"

applying again the change of variable t = [ — y this equal

/01 </O f—y) dy>p AP — 2"t dz

since | —z <l —y as u € (0, z) the last integral is exceeded

/Ol (/Oz(z ) f—y) du>pz(a_1)p dz

On basis of the Hardy inequality (see, [8, p.23]) this is exceeded

p l
< (p_ 2 ap) [ o= ta - gy
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Using change of variable [ — y = x the last term equals

(p—lp—apy /OZU — 2)Pa" L f(2)P da

This proves Lemma 1.
The inequality (6) gives the next assertion for the absolutely continuous
functions.

Theorem 2. Let 1 < p < 00, —00 < a < 1%’ n > 1. Let u(x) be an
absolutely continuos function on (0,1) such that lin%u(:c) = liml u(z) = 0.
T— T—

Then it holds the inequality

__pr
oy P—l—ap

Hggm—l)/p u(z) 7)

d(x)t—«

’d(:p)ax(n—l)/p;l;

Le(0)
where d(x) = min(x,l — ).

Note, the constant
Proof. Now,

p—1p—ap is exact but is not achievable (see, [6]).

ZEQ - ;@xwz(az) + %Xl/2,l(x)v

where Y(q) denote a characteristic function of interval (a,b). Therefore, and
applying (6), (4) we get the inequality
p l
A /
12

p /l/2 u(x)
LP(O,l)_ 0

xl—a
Set in the inequality (6) f(z)x (1, in place of f(z). Then

l : ’ (a=1)p+tn : : 8 — (oa—l)pxn—l T
- ( ., f(t)dt) (1/2) + /z/2 ( / f(t)dt) (I—2) d

< (pp) / ()P () d (9)

—1—ap /2

P 1
" dx.

(8)

(I —az)l—«

u(@)  (m-1)/p
fos

Therefore,

/l/l2 (/xlf ) dt>p(l_“')(a1)pxnldx < (p_lp_ap)p /Z:Q(Z—af)“pw“f(:u) dr
(10)
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From (8) using inequality (10) and the Hardy inequality for power weights we

get
p p 1/2
< <p> / ‘u/(x)}p liozp+n71 dr
Lr(0,0) bp—n—ap 0

( 1_ap> ( (x)yp(z—x)apx"—ldx).

Since (p np ap) ( —ap ) we get the inequality

p P p l
Lp(00) (P —-1- ap> </0

This completes the proof of Theorem 2.

w(@)  n-1)/p
d(x)lfa

dﬁp
dx

A

u(x) (n—1)/p
H d(w)—a"

d(x) Pz dx) .

p
Usually, the constant ( ) in such type inequality is the best but it

—ap
is not realized (see, e.g. [6] for a=0).

Theorem 3 (Main result). Let 1 < p < 00, —00 < o < % and the ball
Bgr = B(0,R) in R". Then it holds the inequality

/BR (R — |z|)* (M)p dr < (p_f_w)p/BR (R — |z|)*

el .0 i R
for any uw € W, (BRr); e = > -1 ERn

p

Ou(x) A

Olz|

Proof. Let u(x) be a C}(Bg) function. Using the duality in the weighted
Lebesgue spaces, one can find the positive function ¢ € LP(Br) with [|@|| 1r(5,) =
1 and such that

([, st 080 o) i - | st 98)° )| ) de

Using spherical system of coordinates, the right hand side may be written as

/S ( /OR(R = 5)u(s,0)|6(s,0)s" ds) 17(6)[d6, (11)

where | g(ixg)] = s"711J(0)| is a Jacobean of transformation from cartesian

coordinate system x to the spherical (s,6) (see, e.g. [21]), Sp—1 is the unit
sphere in R". Applying the Newtonian-Leibniz formula, we have

R
u(s,0) = —/ a“gt’ D, seRr)
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since u(R, ) = 0. Inserting it from (11) we find the expression for that

/Snl </OR(R—S)“‘1/S 6“5%9) dt‘cf)( 9)5”_1d5> 1J(0)|do,  (12)

on base of the Holder inequality,

RN
U #F(s,0) "1dsr/p} 0)|dé.

Using Lemma 1 this is exceeded (set f = g—

D R p 1/p
< —F / { [/ (R — ) Pl ds] X
D — 1- ap Sn—1 0

x { /0 * (s, 0) 5 ds} " }|J(0)|d9. (13)

Applying the Holder inequality in the interior integral and using that ||¢|| z» (o) =
1 we get the final estimate for the right hand side of (13) it is estimated as

S lﬁ | {/Sn_l </°R(R - "t d3> dG}l/p x
" {/Snl </0R¢p(8,9) s”—lds> |J(0)|d9}l/p,

1/p
Oult, 9)’ dt) sl ds] X
Ot

Ou(s,0)
0s

Ou(s, 0)

S

=it (e | dm)“p_
Therefore,
| R (14)

Theorem 3 has been proved.
In terms of dist(z, d2), for domain Q2 = Bpg, inequality (14) is written as

[ aistia, 00 uayran < () aisa,onyer |58

d
p—1—ap oz |
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