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On the Completeness and Minimality of Eigenfunctions
of a Non-self-adjoint Spectral Problem With Spectral Pa-
rameter in the Boundary Condition

Tehran Gasimov

Abstract. The article considers the following spectral problem:

−y′′ + q (x) y = λy, x ∈ (0, 1) ,

y(0) = 0,

y′(0) = (aλ+ b)y(1),


where q(x) is a complex-valued summable function, λ is a spectral parameter, a and b are arbitrary
complex numbers (a 6= 0.) The theorems on completeness and minimality of eigenunctions of a
spectral problem in Lp(0, 1)⊕ C and Lp(0, 1) are proved.
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1. Introduction

Consider the following spectral problem:

−y′′ + q (x) y = λy, x ∈ (0, 1) , (1)

y(0) = 0,

y′(0) = (aλ+ b)y(1),

 (2)

where q(x) is a complex-valued function, λ is a spectral parameter, a and b are arbitrary
complex numbers (a 6= 0.) The purpose of this article is to prove the corresponding the-
orems on the completeness and minimality of a system of eigenfunctions of the spectral
problem (1), (2) in the spaces Lp(0, 1) ⊕ C and Lp(0, 1). There are numerous articles
and monographs on the study of the spectral properties of problems posed for ordinary
differential operators and including spectral parameters in the boundary conditions (see,
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e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). One can cite articles from recent works
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Special mention should be made of the works
[8, 9, 14, 25, 26] directly related to our paper. So, the case q (x) ≡ 0, b = 0 is considered
in [8, 9], and in [14] under the additional condition q (x) = q (1− x) , it is considered the
case b = 0. Other generalizations of the boundary conditions (2) are also found in [25, 26],
where questions of the uniform convergence of spectral expansions and also, under an
additional condition q (x) = q (1− x), the basis properties of eigenfunctions in the spaces
Lp (0, 1) are studied.

2. Auxiliary facts and initial results

In order to obtain the main results, we need some abstract results on complete and
minimal systems in the direct sum of a Banach space with a finite-dimensional one. A
system {un}n∈N of a Banach space X is called complete in X if the closure of the linear
span of this system coincides with the entire space X, and is called minimal if no element
of this system is included in the closed linear span of other elements of this system. Recall
also that a system is complete in X if and only if there is no nonzero linear continuous
functional that annihilates all elements of this system. A system is minimal in X if and
only if it has a biorthogonal system.

Let X1 = X⊕Cm and {ûn}n∈N ⊂ X1 be some minimal system, and
{
ϑ̂n

}
n∈N

⊂ X∗1 =

X∗ ⊕ Cm is its biorthogonal system :

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m distinct natural numbers and NJ = N\J . Assume

δ = det ‖βnij‖ i,j=1,m.

The following theorem is true.

Theorem 1. [27, 28] Let {ûn}n∈N be minimal in X1 with conjugated system
{
ϑ̂n

}
n∈N

⊂
X∗1 . If δ 6= 0, then the system {un}n∈NJ

is minimal in X. In this case, the orthogonally
conjugate system has the form

ϑ∗n =
1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 ... ϑnm
βn1 βn11 ... βnm1

...... . . . . . . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
If {ûn}n∈N is complete and minimal in X1 and δ 6= 0, then {un}n∈N0

is complete and
minimal in X. If the system {ûn}n∈N is complete and minimal in X1 and δ = 0, then the
system {un}n∈N0

is not complete in X.
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Accept λ = −ρ2. Let us denote the forms included in the boundary conditions (2) as
follows:

U1 (y) = y (0) ,

U2 (y) = y′(0)−
(
aρ2 + b

)
y (1) .

 (3)

After these notation, the problem (1), (2) can be written as follows:

−y′′ + q (x) y + ρ2y = 0, x ∈ (0, 1) , (4)

U1(y) = 0,

U2(y) = 0.

 (5)

It is known that there is a system of fundamental solutions y1(x) and y2(x) of the equation
(4) in the interval (0, 1) and these solutions are regular functions of ρ and at large values
of |ρ| with respect to the variable x ∈ [0, 1] uniformly satisfy the following asymptotic
relationships:

y
(j)
1 (x) = (ρω1)

je
ρω1x

[
1 +O

(
1
ρ

)]
,

y
(j)
2 (x) = (ρω2)

jeρω2x
[
1 +O

(
1
ρ

)]
,

 (6)

here j = 0, 1; ρ belongs to one of the four S -sectors [29, p. 62], and ω1, ω2 are different
square roots of −1, numbered so that for ρ ∈ S the inequality Re(ρω1) ≤ Re(ρω2) holds.
For example, for the sector S0 =

{
ρ : 0 ≤ arg ρ ≤ π

2

}
we have ω1 = i, ω2 = −i.

The solution of the equation (1) (or (4)) should be in the form of

y(x) = c1y1(x) + c2y2(x).

Let us choose the constants c1 and c2 so that the function y(x) satisfies the boundary
conditions (5). Then to find the constants c1, c2 we get the following system of algebraic
equations:

c1U1(y1) + c2U1(y2) = 0,

c1U2(y1) + c2U2(y2) = 0.


It is known that there is a non-trivial solution of this system of algebraic equations when
its main determinant (characteristic determinant) ∆(ρ) equals zero. Thus, the number
λ = ρ2 is a eigen value of the spectral problem (1) - (2) if and only if it is a solution of
the following equation:

∆ (ρ) =

∣∣∣∣∣∣
U1 (y1) U1 (y2)

U2 (y1) U2 (y2)

∣∣∣∣∣∣ = U1 (y1)U2 (y2)− U2 (y1)U1 (y2) = 0. (7)
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Considering the asymptotic formulas (6) in the expressions of U1 and U2 in (3), we obtain
the following asymptotic relations:

U1 (y1) = 1 +O(
1

ρ
), U1 (y2) = 1 +O(

1

ρ
),

U2 (y1) = iρ

[
1 +O(

1

ρ
)

]
− (aρ2 + b)eiρ

[
1 +O(

1

ρ
)

]
,

U2 (y2) = −iρ
[
1 +O(

1

ρ
)

]
− (aρ2 + b)e−iρ

[
1 +O(

1

ρ
)

]
.

By substituting these asymptotic relations in the expression of ∆(ρ) in (7) and using

Birkhof’s sign [A] = A+O
(
1
ρ

)
we obtain:

∆(ρ) =

∣∣∣∣∣∣
[1] [1]

iρ [1]− (aρ2 + b)eiρ [1] −iρ [1]− (aρ2 + b)e−iρ [1]

∣∣∣∣∣∣
Calculating the determinant ∆(ρ) and consider that when the complex number ρ enters
the sector Reρ ≥ 0, Imρ ≥ 0 , the inequality Re(iρ) ≤ 0 ≤ Re(−iρ) satisfies, then we
get the following asymptotic relation:

∆ (ρ) =
(
aρ2 + b

)
e−iρ

[
e2iρ − 1 +O

(
1

ρ

)]
− 2iρ [1] =

=
(
aρ2 + b

)
e−iρ

[
e2iρ − 1− 2iρ

aρ2 + b
eiρ +O(

1

ρ
)

]
. (8)

So, the eigen values of the problem (1),(2) are the root of the equation

∆0(ρ) = e2iρ − 1− 2iρ

aρ2 + b
eiρ +O(

1

ρ
) = 0. (9)

Note that the number λ = − b
a (i.e. ρ = ±

√
a
b i ) cannot be an eigen value, because in

this case the function y(x) satisfies the initial conditions y (0) = 0, y
′
(0) = 0, from

which y (x) ≡ 0 is obtained . The roots of the equation f (ρ) = e2iρ − 1 = 0 are the
numbers ρ̃k = πk, k = 0,±1,..... Since ∆(ρ) is an even function, we will consider only
the roots of this function in the right hemisphere. Draw a circle γk with the same radius
δ (0 < δ < π

2 ) around each point ρ̃k. If we denote the region outside these circles by
Qδ, then the function f(ρ) = e2iρ − 1 in this region is bounded by a definite positive
constant from below. Indeed, since the function f(ρ) is a periodic function with a period
π, it suffices to investigate this function in a vertical stripe bounded by the straight lines
Rez = ±π

2 . While in this stripe the following relations

lim
Imρ→−∞

|f(ρ)| = +∞,

lim
Imρ→+∞

|f(ρ)| = 1,
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are true. Since the function f(ρ) does not vanish outside the circle γ0 in this band, it
is bounded from below by an absolute value positive number α outside the circle γ0. At

large values of |ρ| the inequality
∣∣∣O(1ρ)

∣∣∣ < α is also satisfied. Therefore, according to

Rouché’s theorem, at sufficiently large values of k, equation (9) has only one root inside
the circle γk, and if we denote it by ρk, then from equation (9) we get the asymptotic
formula

ρk = πk +O

(
1

k

)
. (10)

In addition, since the function f (ρ) = e2iρ − 1 is bounded below by a certain positive
number in the domain Qδ it follows that for sufficiently large |ρ| the function ∆0(ρ) =
e2iρ − 1− 2iρ

aρ2+b
eiρ +O(1ρ) is also bounded below by a certain positive number in domain

S0 ∩Qδ .
Taken into account the asymptotic formula (6) for sufficiently large |ρ| we get the

inequality

|∆(ρ)| ≥Mδ|ρ|2eτ , (11)

where the constant Mδ independent of ρ, only depends on the number δ > 0.

Thus, the following theorem is proved.

Theorem 2. The characteristic determinant ∆(ρ) of the spectral problem (1),(2) has the
following properties:

1. there exists a positive number Mδ such that, in domain S0 ∩Qδ for the sufficiently
large |ρ| the inequality |∆(ρ)| ≥Mδ|ρ|2eτ holds;

2. The zeros of the function ∆ (ρ)are asymptotically simple and have asymptotics as
follows:

ρk = πk +O

(
1

k

)
, k = 0, 1, 2, ....

3. Construction of the Green function of the spectral problem (1), (2)

To construct the Green function of the problem (1), (2), it is necessary to obtain an
integral representation for the solution of the corresponding non-homogeneous equation.
Let us write the non-homogeneous equation as follows

−y′′
+ q(x)y = λy + f(x), x ∈ (0, 1) . (12)

When the number λ is not an eigenvalue, if we apply the method of variation of the
constant to find the solution of equation (12) that satisfies the boundary conditions (2),
we obtain the following formula for the solution y(x) of this equation:

y(x) = c1y1(x) + c2y2(x) +

∫ 1

0
g(x, ξ)f(ξ)dξ, x ∈ (0, 1), (13)
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where

g(x, ξ) =


1
2

1
W (ξ) (y1 (ξ) y2 (x)− y2 (ξ) y1 (x)) , x > ξ,

−1
2

1
W (ξ) (y1 (ξ) y2 (x)− y2 (ξ) y1 (x)) , x < ξ,

W (x) is the Wronskan of the functions y1(x), y2(x) , i.e.

W (ξ) =

∣∣∣∣ y1(ξ) y2(ξ)

y
′
1(ξ) y

′
2(ξ)

∣∣∣∣ .
Let us claim that the general solution (13) of equation (12) satisfies the boundary condi-
tions (2), i.e. is the solution of the boundary value problem (12), (2). This means that the
constants c1, c2 must be solutions of the following non-homogeneous system of algebraic
equations: 

c1U1(y1) + c2U1(y2) +
∫ 1
0 U1(g)f(ξ)dξ = 0.

c1U2(y1) + c2U(y2) +
∫ 1
0 U2(g)f(ξ)dξ = 0.

Since λ is not an eigenvalue, the main determinant of this system is differ from zero, and
therefore there exists only one solution. Solving this system and substituting the found
values of the constants c1 and c2 in equation (13), we obtain the following formula:

y (x) =

∫ 1

0
G (x, ξ, ρ) f (ξ) dξ. (14)

In formula (14) G(x, ξ, ρ) is a Green’s function and defined as follows:

G (x, ξ, ρ) =
1

∆ (ρ)

∣∣∣∣∣∣
y1 (x) y2 (x) g (x, ξ)
U1 (y1) U1 (y2) U1 (g)
U2 (y1) U (y2) U2 (g)

∣∣∣∣∣∣ , x, ξ ∈ [0, 1], (15)

where

g(x, ξ) =


1
2 (z1 (ξ) y2 (x) + z2 (ξ) y1 (x)) , x ≥ ξ,

−1
2(z1(ξ)y2(x) + z2(ξ)y1(x), x < ξ,

z1 (ξ) =
y2(ξ)

W (ξ)
, z2 (ξ) = − y1(ξ)

W (ξ)
,

U1 (g) = −1

2
(U1 (y2) z1 (ξ) + U1 (y1) z2 (ξ)) ,

U2 (g) = −1

2

(
z1 (ξ) y

′
2 (0) + z2 (ξ) y

′
1 (0)

)
−
(
aρ2 + b

) 1

2
(z1 (ξ) y2 (1) + z2 (ξ) y1 (1)) .

So, the following lemma is proved.

Lemma 1. The Green function of the spectral problem (1),(2) is defined by the formula
(15).
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4. Evaluation of the linearized operator’s resolvent. Theorems on the
completeness

Let us now reduce the study of the spectral problem (1), (2) to the study of the spectral
problem Lŷ = λŷ for an operator L acting in the space Lp(0, 1) ⊕ C. The operator L is
defined as follows:

D(L) =
{
ŷ ∈ Lp ⊕ C : ŷ = (y(x), ay(1)), y ∈W 2

p (0, 1), l(y) ∈ Lp(0, 1), y(0) = 0
}
,

for ŷ ∈ D(L) it is true Lŷ = (l(y); y
′
(0)− by(1)).

Lemma 2. Operator L is a closed operator with a compact resolvent and is dense every-
where in the domain Lp(0, 1) ⊕ C . The eigenvalues of the operator L coincide with the
eigenvalues of problem (1), (2). Each eigen or associated function y(x) of the problem
(1), (2) corresponds to an eigen or associated vector ŷ = (y(x), ay(1)) of the operator L.

Proof. Let’s define the function F ŷ = y(0) for the vector ŷ = (y (x) , ay (1)) , y (x) ∈
W 2
p (0, 1). It can be easily checked that the functional F is bounded in space W 2

p (0, 1) ⊕
C and unbounded in space Lp(0, 1) ⊕ C. Then the considered operator L is a finite-
dimensional contraction of the maximum operator L̃, defined as follows:

L̃ : Lp ⊕ C → Lp ⊕ C,

D
(
L̃
)

=
{
ŷ ∈ Lp ⊕ C : ŷ = (y (x) , ay (1)) , y ∈W 2

p (0, 1) , l (y) ∈ Lp (0, 1)
}
,

L̃ŷ =
(
l (y) , y

′
(0)− by (1)

)
, ∀ ŷ ∈ D(L̃).

Then (see [30, 31]) we obtain that the operator L is a closed operator with a compact
resolvent and its domain is dense everywhere. The second part of the lemma is examined
directly.

Note that since the operator L is closed and dense defined everywhere, it has an adjoint,
and the adjoint operator L∗ will be the linear operator generated by the spectral problem

−z′′
+ q(x)z = λz, (16)

z(1) = 0,

z
′
(1) = −(aλ+ b)z(0),

 (17)

in the space Lq(0, 1)⊕ C, where q = p
p−1 .

To construct the resolvent operator R (λ) = (L − λI)−1 take an arbitrary element
f̃ = (f(x), β) ∈ Lp(0, 1)⊕ C and consider the operator equation (L− λI)ŷ = f̂ . To solve
this equation, it is necessary to find a solution to equation (12) that satisfies condition

y(0) = 0,

y′(0)− (aλ+ b)y(1) = β.

 . (18)
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It is obvious that, for each regular number λ the element ŷ = (y(x, λ), ay(1, λ)) ∈ D(L)
will be the solution of the equation Lŷ − λŷ = f̃ if and only if the function y(x) will be a
solution of the non-homogeneous equation (12), (18). We can present the solution y(x, λ)
of equations (12), (18) in the form of the sum of two functions:

y(x, λ) = φ(x, λ) + h(x, λ)

thus, φ(x, λ) is the solution of the problem (12), (18), and h(x, λ) is the solution of the
problem (1), (18). The representation (14) for the function φ(x, λ) has already been
obtained. Now let’s take a representation for the function h(x, λ) Let’s denote it briefly
by h(x). Then let us seek it in the form

h(x) = a1y1(x) + a2y2(x), x ∈ (0, 1), (19)

where the constants a1, a2 must be the solution of the following system of algebraic equa-
tions: 

U1(h) = 0,

U2 (h) = β,

or 
a1U1(y1) + a2U1(y2) = 0,

a1U2(y1) + a2U2(y2) = β.

By solving this system of equations, we have

a1 = − β

∆ (ρ)
U1 (y2) , a2 =

β

∆(ρ)
U1(y1).

If we substitute them in (18), we obtain

h(x) =
β

∆(ρ)
(−U1(y2)y1(x) + U1(y1)y2(x)). (20)

Thus, if the number λ is a regular point of the operator L, then we obtain the following
representation for the solution y(x, λ) of the problem (12), (18):

y(x, λ) =

∫ 1

0
G(x, ξ, f)f(ξ)dξ +

β

∆ (λ)
(−U1(y2)y1(x) + U1(y1)y2(x)) (21)

where G(x, ξ, λ) is a Green function and is determined by equation (15) .
Now we can proceed to a direct estimate of the resolvent R (λ) = (L− λI)−1 . Let Ωδ

be the image of the domain Qδ in the complex λ -plane under the mapping λ = ρ2.

Theorem 3. For the resolvent of the operator L, which linearizes the spectral problem
(1),(2), in the domain Ωδ for large values of |λ| the following estimate is valid

‖R (λ)‖ ≤ Mδ

|λ|
1
2

. (22)
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Proof. Let f̂ = (f(x), β ∈ Lp ⊕ C be an arbitrary fixed element. To estimate the
resolvent it is necessary to estimate the vector (y (x) , ay (1)) ∈ Lp ⊕ C. Let us show that
if ρ ∈ Qδ, Imρ ≥ 0, then for sufficiently large |ρ|, for the solution y(x, ρ) of the problem
(12), (18) uniformly with respect to the variable x ∈ [0, 1] the following inequality

|(y(x, ρ)| ≤ C

|ρ|

is true; where the constant C is independent of ρ, but depend only on element f̂ ∈
Lp(0, 1)⊕ C and δ. Let us accept λ = −ρ2, ρ = s+ iτ, τ ≥ 0. Then according to (21) the
following representation

y(x, ρ) =

∫ 1

0
G (x, ξ, ρ) f (ξ) dξ +

β

∆ (ρ)
(−U1(y2)y1(x) + U1(y1)y2(x)) =

=

∫ 1

0
G(x, ξ, ρ)f(ξ)dξ + h(x, ρ))

is true, where

h(x, ρ) = β
−U1(y2)y1(x) + U2(y1)y2(x)

∆(ρ)
. (23)

Using asymptotic formulas (3), we can write the following:

U1(y2)y1(x) = eiρx[1] · [1] = eiρx[1] = O(1), (Rei ρ ≤ 0),

U2(y1)y2(x) = e−iρx[1](iρ [1]−
(
aρ2 + b

)
eiρ[1] = aρ2e−iρ(1−x) [1] = O (eτ ) .

Note that these asymptotic formulas uniformly satisfy with respect to the variable x ∈
[0, 1]. Considering these asymptotic formulas in (23), we obtain that as |ρ| → ∞, the
increase in the numerator of the fraction in (23) is like O(eτ ). On the other hand, taking
into account the inequality (11) and the above estimate of the increase in the numerator
of the fraction in (23), for sufficiently large |ρ| in the domain Qδ the following estimate

|h(x, ρ)| ≤M ′
δe
−τ ≤

M
′
δ

|ρ|2
(24)

is obtained, here the constant M
′
δ is independent of ρ.

Now, let us estimate the function φ(x, ρ). Taking into account the asymptotic formulas
(3) in the following expressions

z1(ξ) =
y1(ξ)

W (ξ)
, z2(ξ) = − y2(ξ)

W (ξ)
,

we have:

z1(ξ) =
y2(ξ)∣∣∣∣ y1(ξ) y2(ξ)

y
′
2(ξ) y

′
2(ξ)

∣∣∣∣ =
e−iρξ[1]∣∣∣∣∣∣

eiρξ[1] e−iρξ[1]

iρeiρξ[1] −iρe−iρξ[1]

∣∣∣∣∣∣
=

e−iρξ [1]

iρ

∣∣∣∣ [1] [1]
[1] [1]

∣∣∣∣ =
e−iρξ

−2iρ
[1] =

i

2ρ
e−iρξ[1]

(25)
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z2(ξ) = − y1(ξ)∣∣∣∣∣∣
y1(ξ) y2(ξ)

y
′
1(ξ) y

′
2(ξ)

∣∣∣∣∣∣
= − eiρξ[1]∣∣∣∣ eiρξ[1] e−iρξ[1]

iρeiρξ[1] −iρe−iρξ[1]

∣∣∣∣ = − e−iρξ [1]

iρ

∣∣∣∣ [1] [1]
[1] [1]

∣∣∣∣ = − i

2ρ
eiρξ[1]

(26)
Consider the function G(x, ξ, ρ) in the case of x ≥ ξ (the case of x < ξ is considered
similarly).

The determinant (12), which determines the function G (x, ξ, ρ), can be transformed as
follows: multiply the first column of the determinant by 1

2z2(ξ), and the second column
by −1

2z1(ξ) and add to last column. Using asymptotic formulas (3), (25), (26), we obtain
the following formulas for the elements of the last column of the determinant in (15)

P1 = g (x, ξ) +
1

2
y1 (x) z2 (ξ)− 1

2
y2 (x) z1 (ξ) =

=
1

2
z1(ξ)y2(x) +

1

2
z2(ξ)y1(x) +

1

2
y1(x)z2(ξ)−

1

2
y2 (x) z1 (ξ) =

= y1 (x) z2 (ξ) = eiρx [1]

(
−i
2ρ
e−iρξ

)
[1] = − i

2ρ
eiρ(x−ξ) [1] , (27)

P2 = U1 (g) +
1

2
z2 (ξ)U1 (y1)−

1

2
z1 (ξ)U1 (y2) =

= −1

2
z1(ξ)U1(y2)−

1

2
z2(ξ)U1(y1) +

1

2
z2(ξ)U1(y1)−

−1

2
z1 (ξ)U1 (y2) = −z1 (ξ)U1 (y2) = − i

2ρ
e−iρξ [1] · [1] = − i

2ρ
eiρξ [1] , (28)

P3 = −1

2
z1 (ξ) y

′
2(0)− 1

2
z2 (ξ) y

′
1(0)− 1

2

(
aρ2 + b

)
z1 (ξ) y2 (1)

−1

2
(aρ2 + b)z2(ξ)y1(1) +

1

2
z2 (ξ) y

′
1 (0)

−1

2
z2(ξ)(aρ

2 + b)y1(1)− 1

2
z1(ξ)y

′
2(0) +

1

2
(aρ2 + b)z1(ξ)y2(1) =

= −z1 (ξ) y
′
2(0)−

(
aρ2 + b

)
z2 (ξ) y1 (1) = iρ [1]

i

2ρ
eiρξ [1]−

(aρ2 + b)eiρ[1](− i

2ρ
e−iρξ[1]) = −1

2
eiρξ[1] +

(aρ2 + b)i

2ρ
eiρ(1−ξ) (29)

Substituting formulas (27), (28), (29) into the formula (15) of the Green function, we
obtain:

G(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣
y1(x) y2(x) P1

U1(y1) U1(y2) P2

U2(y1) U2(y2) P3

∣∣∣∣∣∣ =
eiρ

(aρ2 + b)∆0(ρ)
×
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×

∣∣∣∣∣ eiρx[1] e−iρx[1] − i
2ρe

iρ(x−ξ)[1]

iρ[1]− (aρ2 + b)eiρ[1] −iρ[1]− (aρ2 + b)e−iρ[1] aρ2+b
2ρ ieiρ(1−ξ) [1]− 1

2e
iρξ[1]

∣∣∣∣∣ .
Since the last formula contains 0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1, x ≥ ξ and Re( iρ) ≤ 0 the powers
of the exponents included in the determinant are complex numbers, the real part of which
is not positive. We have shown that the function ∆0(ρ) is bounded below by some positive
number. Thus, the function G(x, ξ, ρ) for large values of ρ ∈ S0 ∩Qδ, 0 ≤ ξ ≤ x ≤ 1, and
|ρ| satisfies the following inequality

|G(x, ξ, ρ)| ≤ C

|ρ|
; (30)

this inequality is satisfied uniformly with respect to the variables x and ξ. Now, taking into
account the inequalities (20) and (30), we obtain the following estimate for the solution
y(x, ρ) of equations (12), (18) for the fixed element f̂ ∈ Lp(0, 1)⊕ C:

|y(x, ρ| =
∣∣∣∣∫ 1

0
G (x, ξ, ρ) f (ξ) dξ + h (x, ρ)

∣∣∣∣ ≤
≤
∫ 1

0
|G (x, ξ, ρ)| |f (ξ)| dξ + |h(x, ρ| ≤

≤ C

|ρ|
(

∫ 1

0
|f (ξ)| dξ + |β|) ≤

≤ C

|ρ|

∥∥∥f̂∥∥∥
Lp⊕C

. (31)

Hence, we have the inequality

‖y‖Lp
≤ C

|ρ|

∥∥∥f̂∥∥∥
Lp⊕C

.

Since the estimate (31) is satisfied uniformly with respect to the variable x ∈ [0, 1], the
estimate for |y (1)| is obtained by writing x = 1 in (31). Thus, the inequality (22) is true
for each λ ∈ Ωδ.

Theorem is proved.

Using the Theorem 3, let’s prove the following theorem, which is the main result of
this section.

Theorem 4. The system of eigen and associated elements of the operator L is a complete
and minimal system in the space Lp (0, 1)⊕ C, 1 < p <∞.

Proof. The minimality of the system of eigenvectors and associated vectors of the
operator L in the space Lp (0, 1) ⊕ C, 1 < p < ∞, is a consequence of the fact that the
resolvent of the operator L is a compact operator in this space [32]. Therefore, we prove
the completeness of this system. According to Theorem 2, the resolvent of the operator
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L satisfies estimate (22) . This estimate means that the resolvent R (λ) = (L− λI)−1

satisfies the inequality ∥∥R (ρ2)∥∥ ≤ Cδ
|ρ|
, ρ ∈ Qδ, |ρ| ≥ r0. (32)

Let us assume that the system of root vectors of the operator L is not complete in space
Lp (0, 1)⊕C. Then there exists a vector ĝ ∈ Lq (0, 1)⊕C orthogonal to all root subspaces
of the operator L, i.e.〈

Qnf̂ , ĝ
〉

= 0, ∀f̂ ∈ Lp (0, 1)⊕ C, n = 0, 1, 2, ...,

and hence Q∗nĝ = 0, n = 0, 1, 2, ...; here Qn denotes the Riesz projectors of the operator
L :

Qn =
1

2πi

∮
|λ−λn|=r

R (λ)dλ.

In this case it is obvious that Q∗n, n ∈ N0, (N0 = N ∪ {0}) , will be the Riesz projectors of
the adjoint operator L∗. It follows that R (λ, L∗) ĝ will be an entire function in the entire
λ - plane. On the other hand, based on estimate (32), the inequality

‖R (λ, L∗)‖ ≤ Cδ

|λ|
1
2

, λ ∈ Ωδ, |λ| ≥ r20, (33)

is true. Then, by the maximum principle, inequality (33) is satisfied in the entire λ-plane
and R (λ, L∗) ĝ → 0 as |λ| → ∞, and by Liouville’s theorem this means that an entire
function R (λ, L∗) ĝ is a constant function. Then differentiating this function and taking
into account that d

dλR (λ, L∗) = R2 (λ, L∗) we obtain that R2 (λ, L∗) ĝ = 0. Since for all
λ ∈ ρ (L∗) the operator R (λ, L∗) is single-valued, we obtain that ĝ = 0, which means
that the root vectors of the operator L form a complete system in the space Lp(0, 1)⊕C.
Theorem is proved.

From Theorem 4 it also follows that the system of eigenfunctions and associated func-
tions of the spectral problem (1),(2) is overflowing in space Lp(0, 1), and in this system
one function is superfluous. Therefore, we clarify the question of which function can be
excluded from this system while maintaining the completeness and minimality properties.
Let the system {ẑn}∞n=0 be biorthogonal system to {ŷn}∞n=0. It is a system of root vectors
of the adjoint operator L∗ moreover ẑn = (zn (x) , azn (0)), where zn (x) is an eigenfunction
or an associated function of the adjoint spectral problem (16),(17).

The following theorem is true.

Theorem 5. The system {yn(x)}∞n=0,n6=n0
, obtained from the system of eigen and as-

sociated functions {yn(x)}∞n=0,n6=n0
, of the spectral problem (1),(2) after removing any

eigenfunction yn0 (x), corresponding to a simple eigenvalue, is complete and minimal in
the space Lp (0, 1) , 1 < p < ∞. In this case, the biorthogonal system has the form
{ϑn(x)}∞n=0,n 6=n0

, where

ϑn (x) = zn (x)− zn (0)

zn0 (0)
zn0 (x) .
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Proof. As follows from Theorem 1, a sufficient condition for the completeness and
minimality of the system {yn(x)}∞n=0,n6=n0

is the condition zn0 (0) 6= 0. For any simple
eigenvalue λn0 this condition is satisfied, because, otherwise, we get that the function
zn0 (x) is a solution to equation (16), satisfying the initial conditions zn0 (1) = 0, z′n0 (1) =
0, so this solution is trivial, i.e. zn0 (x) ≡ 0, which contradicts the fact that it is an
eigenfunction. Thus, the assertion of the theorem follows from Theorem 1.
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[25] Maris E.A., Goktaş S. On the spectral properties of a Sturm-Liouville problem with
eigenparameter in the boundary condition. Hacet. J. Math. Stat., Volume 49 (4)
(2020), 1373 – 1382
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