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Uniform Convergence of Spectral Expansions for a Bound-
ary Value Problem with a Boundary Condition Depend-
ing on the Spectral Parameter
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Abstract. In this paper, we consider the spectral problem for ordinary differential equations of
fourth order with a spectral parameter contained in one of the boundary conditions. The uniform
convergence of spectral expansions in terms of the system of eigenfunctions of this problem is
studied.
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1. Introduction

We consider the following eigenvalue problem

ℓ(y)(x) ≡ y(4)(x)− (q(x)y′(x))′ = λy(x), 0 < x < l, (1.1)

y′(0) cosα− y′′(0) sinα = 0, (1.2a)

y(0) cosβ + Ty(0) sinβ = 0, (1.2b)

(aλ+ b) y′(l) + (cλ+ d) y′′(l) = 0, (1.2c)

y(l) cos δ − Ty(l) sin δ = 0, (1.2d)

where λ ∈ C is a spectral parameter, Ty ≡ y′′′ − qy′, q is a positive absolutely continuous
function on [0, l], α, β, δ, a, b, c, d are real constants such that 0 ≤ α, β ≤ π/2, π/2 ≤ δ < π
(with the exception of the case β = δ = π/2), σ = bc− ad > 0.

Note that problem (1.1), (1.2) for α = β = 0 arises when describing small bending
vibrations of an elastic cantilever homogeneous beam, in cross sections of which a longi-
tudinal force acts, the left end of which is fixed, and a load is attached to the right end
by means of a weightless rod, which is held in equilibrium by means of an elastic spring
(see, e.g., [6, 17]).
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The uniform convergence Fourier series expansions in the systems of root functions of
Sturm-Liouville problems were studied in [7-9, 11-13, 15].

Problem (1.1), (1.2) in the case α = β = 0 was studied in [1], where, in particular, it
was proved that the eigenvalues of this problem are real and simple and form an infinitely
increasing sequence. Moreover, the location of the eigenvalues on the real axis is studied,
the oscillatory properties of the eigenfunctions are investigated, and the basis property in
the space Lp(0, l), 1 < p < ∞, of the system of eigenfunctions of this problem with one
arbitrary remote function is established.

The purpose of this paper is to study the uniform convergence of spectral expansions
in terms of eigenfunctions of problem (1.1), (1.2).

2. Preliminary

Consider the boundary condition

y′(0) cos γ + y′′(0) sin γ = 0, (1.2c′)

where γ ∈
[
0, π2 ]

]
.

By following the argument in Theorem 5.2 of [4] we can prove that for each fixed
α, β the eigenvalues of problem (1.1), (1.2a) (1.2b), (1.2c′), (1.2d) are real, simple and
form infinitely increasing sequence {λk(γ, δ)}∞k=1 such that λk(γ, δ) > 0 for k ≥ 2, and for
each γ there exists δ0(γ) ∈

[
π
2 , π

)
such that λ1(γ, δ) > 0 for δ ∈ [0, δ0(γ)), λ1(γ, δ) = 0

for δ = δ0(γ), λ1(γ, δ) < 0 for δ ∈ (δ0(γ), π). Moreover, the eigenfunction yk,γ,δ(x),
corresponding to the eigenvalue λk(γ, δ), for k ≥ 2 has exactly k − 1 simple zeros, for
k = 1 has no zeros if δ ∈ [0, δ0(γ)], has an arbitrary number of simple zeros in the interval
(0, 1) if δ ∈ (δ0(γ), π).

For the study of spectral properties of problem (1.1), (1.2) we consider solutions of the
initial-boundary problem (1.1), (1.2a) (1.2b), (1.2d).

Theorem 2.1. For every fixed λ ∈ C there exists a unique non-trivial solution y(x, λ)
of problem (1.1), (1.2a) (1.2b), (1.2d) up to a constant multiplier.

The proof of this lemma is similar to that of [1, Lemma 2.3] (see also [10, Theorem
2.1]).

Remark 2.1. Let y(x, λ) be the solution of (1.1), (1.2a) (1.2b), (1.2d) normalized by
the condition |y(0)|+ |Ty(0)| = 1 for λ > 0, and |y′(l)|+ |y′′(l)| = 1 for λ ≤ 0. Since Eq.
(1.1) depends linearly of the parameter λ, it follows from the general theory of ordinary
differential equations (see, e.g., [16, Ch. I]) that for every fixed x ∈ [0, l] the function
y(x, λ) is an entire function of the parameter λ.

Let α, β ∈ [0, π/2] and δ ∈ [π/2, π) be arbitrary fixed, and let Bk = (λk−1(0, δ), λk(0, δ)),
k = 1, 2, . . . , where λ0(0, δ) = −∞.

It is obvious that the eigenvalues λk(0, δ) and λk(π/2, δ), k ∈ N, of problem (1.1),
(1.2a) (1.2b), (1.2c′), (1.2d) for γ = 0 and γ = π/2 are zeros of entire functions y′(l, λ)
and y′′(l, λ) respectively. Note that the function F (λ) = y′′(l, λ)/y′(l, λ) is defined in
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B ≡
( ∞⋃

k=1

Bk

)
∪ (C\R) and is a meromorphic function of finite order, and the eigenvalues

λk(π/2, δ) and λk(0, δ), k ∈ N, are zeros and poles of this function respectively.

Lemma 3.1. The following formula holds:

dF (λ)

dλ
= − 1

y′2(l, λ)

l∫
0

y2(x, λ)dx, λ ∈ B. (2.1)

The proof of this lemma literally repeats the proof of [11, formula (30)].

Lemma 2.2 The following limit relation holds:

lim
λ→−∞

F (λ) = +∞. (2.2)

The proof of this lemma is similar to that of [1, Lemma 2.8].

In view of [5, Property 1], by (2.1) and (2.2) we get

λ1(π/2, δ) < λ1(0, δ) < λ2(π/2, δ) < λ2(0, δ) < . . . . (2.3)

Let m(λ) = ay′(l, λ) + cy′′(l, λ).

Remark 2.2. If follows from boundary condition (1.2c) that if λ is an eigenvalue of
problem (1.1), (1.2), then m(λ) ̸= 0.

We denote by s(λ), λ ∈ R, the number of zeros of the function y(x, λ) contained in the
interval (0, l).

By following the arguments in Lemma 2.11 from [1] we verify that the following oscil-
lation theorem is valid for the function y(x, λ).

Lemma 2.3. If λ ∈ (λk−1(0, δ), λk(π/2, δ)) for k ≥ 3, then k − 2 ≤ s(λ) ≤ k − 1, and
if λ ∈ [λk(π/2, δ), λk(0, δ)] for k ≥ 3, then s(λ) = k−1. Moreover, if δ ∈ [π/2, δ0(0)], then
s(λ) = 0 for λ ∈ [0, λ1(0, δ)], 0 ≤ s(λ) ≤ 1 for λ ∈ (λ1(0, δ), λ2(π/2, δ)) and s(λ) = 1 for
λ ∈ [λ2(π/2, δ), λ2(0, δ)], if δ ∈ [δ0(0), δ0(π/2)), then 0 ≤ s(λ) ≤ 1 for λ ∈ [0, λ2(π/2, δ),
s(λ) = 1 for λ ∈ [λ2(π/2, δ), λ2(0, δ)], and if δ ∈ [δ0(π/2, π), then s(λ) = 1 for λ ∈
[0, λ2(0, δ)].

3. The properties of eigenvalues and eigenfunctions of problem (1.1),
(1.2).

We introduce the following boundary condition

ay′(l) + cy′′(l) = 0. (1.2c′′)

Note that, boundary condition (1.2c′′) in the case a = 0 (c = 0) coincides with condition
(1.2c′) for γ = π/2 (γ = 0). By [2, p. 768] the eigenvalues of problem (1.1), (1.2a) (1.2b),
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(1.2c′′), (1.2d) for each fixed α, β and for ac ̸= 0 are real, simple and form infinitely
increasing sequence {τk(δ)}∞k=1 such that for any fixed α, β and δ the relations hold

λ1(π/2, δ) < τ1(δ) < λ1(0, δ) < λ1(π/2, δ) < τ2(δ) < λ1(0, δ) < . . . (3.1a)

in the case a/c > 0, and

τ1(δ) < λ1(π/2, δ) < λ1(0, δ) < τ2(δ) < λ2(π/2, δ) < λ2(0, δ) < . . . (3.1b)

in the case a/c < 0.
For a ̸= 0 (c ̸= 0) we define the number ka (kc) from the inequality

λka−1 ≤ − b/a < λka (λkc−1 < − d/c ≤ λkc).

Remark 3.1. If ac ̸= 0, then ka ≤ kc + 1 for ac > 0, and ka ≥ kc for ac < 0.
Theorem 3.1. The eigenvalues of problem (1.1), (1.2) are real and simple and form

an infinitely increasing sequence {λk}∞k=1 such λk > 0 for k ≥ 3 + sgn |c|. Moreover, for
k > k1 = max {ka, kc} + 2, the eigenvalues have the following arrangement on the real
axis:

λk−1(0, δ) < λk < λk(π/2, δ) < λk(0, δ), if c = 0, (3.2a)

λk−2(0, δ) < τk−1(δ) = λk−1(π/2, δ) < λk < λk−1(0, δ), if a = 0, (3.2b)

λk−2(0, δ) < λk−1(π/2, δ) < τk−1(δ) < λk < λk−1(0, δ), if ac > 0, (3.2c)

λk−2(0, δ) < τk−1(δ) < λk < λk−1(π/2, δ) < λk−1(0, δ), if ac < 0. (3.2d)

Remark 3.2. Using Lemma 2.3 from Theorem 3.1 one can obtain the oscillatory
properties of eigenfunctions corresponding to all positive eigenvalues. For example, if
c = 0, then the function yk(x) (k ≥ 1 for δ ≤ δ0(π/2) and ka ≥ 2; k ≥ 2 for δ ≤ δ0(π/2)
and ka = 1, for δ0(π/2) < δ ≤ δ0(0) and for δ > δ0(0) and ka ≥ 3; k ≥ 3 for δ > δ0(0) and
ka ≤ 2) has exactly k − 1 simple zeros for k < ka, has either k − 2 or k − 1 simple zeros
in the interval (0, 1) for k ≥ ka.

4. Asymptotic formulas for eigenvalues and eigenfunctions of problems
(1.1), (1.2a) (1.2b), (1.2c′′), (1.2d) with q ≡ 0 and (1.1), (1.2)

Lemma 4.1. Let q ≡ 0 in Eq. (1.1). Then the following asymptotic formulas for the
eigenvalues and eigenfunctions of problem (1.1), (1.2a) (1.2b), (1.2c′′), (1.2d) with q ≡ 0
are valid:

4
√
τk(δ) =

(
k − 1 + 3 sgnβ

4

)
π

l
+O

(
1

k2

)
, if α = 0, c = 0, (4.1a)

4
√
τk(δ) =

(
k − 2 + 3 sgnβ

4

)
π

l
+

(1 + sgnβ) cotα

2kπ
+O

(
1

k2

)
, if α ∈ (0, π/2] , c = 0,

(4.1b)
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4
√
τk(δ) =

(
k − 2 + 3 sgnβ

4

)
π

l
+

a/c

kπ
+O

(
1

k2

)
, if α = 0, c ̸= 0, (4.1c)

4
√
τk(δ) =

(
k − 3(1+ sgnβ)

4

)
π
l +

2a/c+(1+sgnβ) cotα
2kπ +O

(
1
k2

)
,

if α ∈ (0, π/2] , c ̸= 0,

(4.1d)

vk, δ(x) =
√

1+ sgnβ
l

{
(1− sgnβ) sin 4

√
τk x− (−1)sgnβ cos 4

√
τk x+

(1− sgnβ) e−
4
√
τk x +O

(
1
k2

)}
, if α = 0, c = 0,

(4.2a)

vk, δ(x) =
√

2− sgnβ
l

{
sin 4

√
τk x− sgnβ · cos 4

√
τk x− sgnβ · e− 4

√
τk x+

sgnβ cotα
(2−sgnβ) 4

√
τk

sin 4
√
τk x− (1 + sgnβ) cotα

2 4
√
τk

cos 4
√
τk x+

(1 + sgnβ) cotα
2 4
√
τk

e−
4
√
τk x +O

(
1
k2

)}
, if α ∈ (0, π/2] , c = 0,

(4.2b)

vk, δ(x) =
√

1+ sgnβ
l

{
(1− sgnβ) sin 4

√
τk x− (−1)sgnβ cos 4

√
τk x+

(1− sgnβ) e−
4
√
τk x + (−1)k+1

(√
2
2

)sgnβ
e

4
√
τk (x−l)+

(−1)k+1
(√

2
2

)sgnβ
a/c
ρk

e
4
√
τk (x−l) +O

(
1
k2

)}
, if α = 0, c ̸= 0,

(4.2c)

vk, δ(x) =
√

2− sgnβ
l

{
sin 4

√
τk x− sgnβ · cos 4

√
τk x− sgnβ · e− 4

√
τk x+

(−1)k+1− sgnβ
(√

2
2

)1− sgnβ
e

4
√
τk (x−l) − sgnβ · cotα

ρk
sin 4

√
τk x−

cotα
(2−sgnβ)ρk

cos 4
√
τk x+ cotα

(2−sgnβ)ρk
e−

4
√
τk x+

+ (−1)k+sgnβ
(√

2
2

)1−sgnβ
a/c
ρk

eρk(x−l) + O
(

1
k2

)}
, if α ∈

(
0, π2

]
, c ̸= 0,

(4.2d)

where relations (4.2a)-(4.2d) hold uniformly for x ∈ [0, 1].
The proof of this lemma is similar to that of [3, Lemma 3.1].
By (4.1) from (4.2) by direct calculations we obtain

||vk, δ||22 = 1 +O
(
k−2

)
, (4.3)

where || · ||2 is the norm in L2(0, l).
We denote by Ψk(x), k ∈ N the normalized eigenfunction, corresponding to the eigen-

value τk of problem (1.1), (1.2a) (1.2b), (1.2c′), (1.2d) with q ≡ 0, i.e. Ψk(x) =
vk, δ(x)
||vk, δ||2 .

Then by (4.3) for Ψk(x) the asymptotic formulas (4.2a)-(4.2d) are valid.
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The function q0(x), x ∈ [0, l], and the number q0 we define as follows:

q0(x) =

x∫
0

q(t)dt, q0 =

l∫
0

q(t)dt.

Lemma 4.2. For the eigenvalues and eigenfunctions of problem (1.1), (1.2) we have
the following asymptotic formulas:

4
√

λk =

(
k − 5 + 3 sgnβ

4

)
π

l
+

q0
4kπ

+O

(
1

k2

)
, if α = 0, c = 0, (4.4a)

4
√
λk =

(
k − 6+3 sgnβ

4

)
π
l +

q0+2(1+sgnβ) cotα
4kπ +O

(
1
k2

)
,

if α ∈ (0, π/2] , c = 0,

(4.4b)

4
√

λk =

(
k − 6 + 3 sgnβ

4

)
π

l
+

q0 + 4a/c

4kπ
+O

(
1

k2

)
, if α = 0, c ̸= 0, (4.4c)

4
√
λk =

(
k − 7+3 sgnβ)

4

)
π
l +

q0+4a/c+2(1+sgnβ) cotα
4kπ +O

(
1
k2

)
,

if α ∈ (0, π/2] , c ̸= 0,

(4.4d)

yk(x) =
√

1+ sgnβ
l

{
(1− sgnβ) sin 4

√
λkx− (−1)sgnβ cos 4

√
λkx+

(1− sgnβ) e−
4√λkx + (−1)sgnβ (1− sgnβ)q0− q0(x)

4ϱk
sin 4

√
λkx−

(−1)sgnβ q0+(1− sgnβ)q0(x)
4ϱk

cos 4
√
λkx + (1− sgnβ) q0−q0(x)

4ϱk
e

4√λkx +O
(

1
k2

)}
,

if α = 0, c = 0,

(4.5a)

yk(x) =
√

2− sgnβ
l

{
sin 4

√
λkx− sgnβ · cos 4

√
λkx− sgnβ · e− 4√λkx−

sgnβ q0(x)+4 cotα
4ρk

sin 4
√
λkx − q0(x)+2(1+sgnβ) cotα

4ρk
cos 4

√
λkx+

sgnβ· q0(x)+2(1+sgnβ) cotα
4ρk

e−
4√λkx +O

(
1
k2

)}
, if α ∈ (0, π/2] , c = 0,

(4.5b)
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yk(x) =
√

1+sgnβ
l

{
(1− sgnβ) sin 4

√
λkx− (−1)sgnβ cos 4

√
λkx+

(1− sgnβ) e−
4√λkx + (−1)k+sgnβ

(√
2
2

)sgnβ
e

4√λk(x− l)+

(−1)sgnβ (1− sgnβ)(q0+4a/c)− q0(x)
4ϱk

sin 4
√
λkx−

(−1)sgnβ q0+4a/c+(1− sgnβ) q0(x)
4ϱk

cos 4
√
λkx+ (1− sgnβ) q0+4a/c−q0(x)

4ϱk
e−

4√λkx+

(−1)k+sgnβ
(√

2
2

)sgnβ
q0(x)
4ϱk

e
4√λk(x−l) +O

(
1
k2

)}
, if α = 0, c ̸= 0,

(4.5c)

yk(x) =
√

2−sgnβ
l

{
sin 4

√
λkx− sgnβ · cos 4

√
λkx− sgnβ · e− 4√λkx+

(−1)k+sgnβ
(√

2
2

)sgnβ
e

4√λk(x− l) − sgnβ 4 cotα+ q0(x)
4ϱk

sin 4
√
λkx−

q0(x)+2(1+sgnβ) cotα
4ϱk

cos 4
√
λkx+ sgnβ· q0(x)+ 4 cotα

4ϱk
e−

4√λkx

+(−1)k+sgnβ q0(x)−q0+4a/c
4ϱk

e
4√λk(x− l) +O

(
1
k2

)
, if α ∈ (0, π/2] , c ̸= 0,

(4.5d)

where relations (4.5a)-(4.5d) hold uniformly for x ∈ [0, 1].

The proof of this lemma is similar to that of [3, Lemma 3.2].

5. Uniform convergence of expansions in Fourier series of subsystems
of eigenfunctions of problem (1.1), (1.2)

Let

δk = ||yk||22 + σ−1m2
k. (5.1)

Since σ > 0 and mk ̸= 0 it follows from (5.1) that

δk > 0, k ∈ N. (5.2)

Theorem 5.1. Let r be the any fixed positive integer. Then the system {yk(x)}∞k=1, k ̸=r

of eigenfunctions of problem (1.1), (1.2) forms a basis in Lp(0, l), 1 < p < ∞, and for
p = 2 this basis is a Riesz basis. The system {uk(x)}∞k=1, k ̸=r, conjugate to the system
{yk(x)}∞k=1, k ̸=r, is defined by the equality:

uk(x) = δ−1
k

{
yk(x)−mkm

− 1
r yr(x)

}
, k ∈ N, k ̸= r, (5.3)

The proof of this theorem repeats the proof of Theorem 4.1 of [1].
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If r is an arbitrary fixed natural number, then by Theorem 5.1 the Fourier series
expansion

f(x) =
∞∑

k=1, k ̸=r

(f, uk) yk(x), (5.4)

in the system {yk(x)}∞k=1, k ̸=r of any continuous function f(x) on [0, 1] converges in Lp (0, l), 1 <
p < ∞, and converges unconditionally for p = 2.

The main result of this paper is the following theorem.
Theorem 5.1. Let r be the an arbitrary fixed positive integer, f(x) is continuous

function on the interval [0, l] and has uniformly convergent on [0, 1] Fourier series in the
system {Ψk(x)}∞k=1. Then the series (5.4) converges uniformly on [0, 1].

Proof. If α = β = 0 and c = 0 in boundary conditions (1.2a)-(1.2c) and (1.2c′′), then
it follows from (4.1a) and (4.2a) that for eigenvalues and eigenfunctions of problem (1.1),
(1.2a), (1.2b), (1.2c′′), (1.2d) with q ≡ 0 the following asymptotic formulas hold:

4
√

τk(δ) =

(
k − 1

4

)
π

l
+O

(
1

k2

)
, (5.5)

Ψk(x) =
√

1
l

{
sin
(
k − 1

4

)
π
l x− cos

(
k − 1

4

)
π
l x+ e−(k−

1
4)

π
l
x +O

(
1
k2

)}
, (5.6)

where (5.6) holds uniformly for x ∈ [0, l].
It follows from (4.4a) and (4.5a) that for eigenvalues and eigenfunctions of problem

(1.1), (1.2) with α = β = 0 and c = 0 the asymptotic formulas are valid:

4
√

λk =

(
k − 5

4

)
π

l
+

q0
4kπ

+O

(
1

k2

)
, (5.7)

yk(x) =
√

1
l

{
sin
(
k − 5

4

)
π
l x− cos

(
k − 5

4

)
π
l x+ e−(k−

5
4)

π
l
x+

(q0− q0(x))l+q0x
4kπ sin

(
k − 5

4

)
π
l x− (q0+q0(x))l−q0x

4kπ cos
(
k − 5

4

)
π
l x+

(q0−q0(x))l−q0x
4kπ e− (k− 5

4)
π
l
x +O

(
1
k2

)}
,

(5.8)

where (5.8) holds uniformly for x ∈ [0, l].
By asymptotic formulas (5.6) and (5.8) we have

yk(x) = Ψk−1(x) +
√

1
l

{
(q0− q0(x))l+q0x

4kπ sin
(
k − 5

4

)
π
l x− (q0+q0(x))l−q0x

4kπ ×

cos
(
k − 5

4

)
π
l x + (q0−q0(x))l−q0x

4kπ e− (k− 5
4)

π
l
x +O

(
1
k2

)}
.

(5.9)

In view of (5.8) we get

y′k(l) = (−1)k
√
2

√
1

l

(
q0
4

+O

(
1

k

))
,
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y′′k(l) = (−1)k
√
2

√
1

l

k2π2

l2

(
1 +

q0l − 10π

4kπ
+O

(
1

k2

))
,

which implies that

mk = ay′k(l) + cy′′k(l) = −
by′k(l) + dy′′k(l)

λk
= O

(
1

k2

)
. (5.10)

Direct calculations show that

||yk||22 = 1 +O

(
1

k2

)
. (5.11)

Then by (5.10) and (5.11) it follows from (5.1) that

δk = ||yk||22 + σ−1m2
k = 1 +O

(
1

k2

)
. (5.12)

Let r be the any fixed positive integer. By (5.10)-(5.12), from (5.3) we get

uk(x) = δ−1
k

{
yk(x)−mk mr

−1 yr(x)
}
= yk(x) +O

(
1

k2

)
. (5.13)

Note that for uniformly convergence of series (5.4) it is necessary and sufficient uniform
convergence of the series

∞∑
k= r+1

(f, uk)yk(x). (5.14)

By (5.13) we have

∞∑
k= r+1

(f, uk)yk(x) =
∞∑

k= r+1

(f, yk)yk(x) +
∞∑

k= r+1

O

(
1

k2

)
. (5.15)

it follows from (5.9) that

yk(x) = Φk−1(x) +O

(
1

k

)
. (5.16)

According to (5.16) we have

∞∑
k= r+1

(f, yk)yk(x) =
∞∑

k= r+1

(f, yk)Φk−1(x) +
∞∑

k= r+1

(f, yk)O
(
1
k

)
. (5.17)

Since {yk(x)}∞k=1, k ̸=r is a Riesz basis in L2(0, l) the following estimate holds

∞∑
k=l+1

∣∣(f, yk)O ( 1k)∣∣ ≤ const

{
∞∑

k=l+1

|(f, yk)|2 +
∞∑

k=l+1

1
k2

}
< +∞.
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Hence to study the uniform convergence of the series (5.14), it suffices to study the uniform
convergence of the series

∞∑
k= r+1

(f, yk)Ψk−1(x) (5.18)

Let

p1(x) =

√
1

l

(q0 − q0(x))l + q0x

4π
, p2(x) =

√
1

l

(q0 + q0(x))l − q0x

4π
,

p3(x) =

√
1

l

(q0 − q0(x))l − q0x

4π
, ek,1(x) = sin

(
k − 5

4

)
π

l
x, ek,2(x) = cos

(
k − 5

4

)
π

l
x,

ek,3(x) = e− (k− 5
4)

π
l
x, x ∈ [0, l].

Then by (5.9) we get

yk(x) = Ψk−1(x) + k−1p1(x)ek,1(x) + k−1p2(x) ek,2(x) + k−1p3(x) ek,3(x) +O

(
1

k2

)
,

whence implies that

∞∑
k= r+1

(f, yk)Φk−1(x) =
∞∑

k= r+1

(f,Φk−1) Φk−1(x)+

∞∑
k= r+1

k−1(fp1, ek,1) Φk−1(x) +
∞∑

k= r+1

k−1(fp2, ek,2) Φk−1(x)+

∞∑
k= r+1

k−1(fp3, ek,3) Φk−1(x) +
∞∑

k= r+1

O
(
k−2

)
Φk−1(x). (5.19)

By virtue of [14, Lemma 5] each of the systems {ek,j}∞k=1, j = 1, 2. 3, is a Bessel system.
Therefore, we have the following estimates

∞∑
k=l+1

∣∣∣∣(fpj , ek, j)k

∣∣∣∣ ≤ const

( ∞∑
k=l+1

1

k2
+

∞∑
k=l+1

|(fpj , ek, j)|2
)

≤ const (1+||f ||22), j = 1, 2, 3.

By virtue of the condition of this theorem the series
∞∑

k= r+1

(f,Φk−1) Φk−1(x) converges

uniformly on the interval [0, 1]. Then, as seen from (5.19), the series (5.18) converges
uniformly on [0, 1].

The rest cases are treated in a similar way. The proof of this theorem is complete.

References

[1] Z.S. Aliyev, Basis properties of a fourth order differential operator with spectral pa-
rameter in the boundary condition, Cent. Eur. J. Math., 8(2) (2010), 378-388.



Uniform Convergence of Spectral Expansions 13

[2] Z.S. Aliev, Basis properties in Lp of systems of root functions of a spectral problem
with spectral parameter in a boundary condition, Diff. Equ., 47(6) (2011), 766-777.

[3] Z.S. Aliyev, K.F. Abdullayeva, Uniform convergence of spectral expansions in the terms
of root functions of a spectral problem for the equation of a vibrating beam, J. Math.
Study 54(4) (2021), 435-450.

[4] J. Ben Amara, Sturm theory for the equation of vibrating beam, J. Math. Anal. and
Appl. 349(1) (2009), 1-9.

[5] D.O. Banks, G.J. Kurowski, A Prufer transformation for the equation of a vibrating
beam subject to axial forces, J. Differential Equations, 24 (1977), 57-74.

[6] B.B. Bolotin, Vibrations in technique: Handbook in 6 volumes, The vibrations of linear
systems, I, Engineering Industry, Moscow, 1978.

[7] N.Yu. Kapustin, On the uniform convergence of the Fourier series for a spectral problem
with squared spectral parameter in a boundary condition. Differ. Equ. 46(10) (2010),
1507-1510.

[8] N.Yu. Kapustin, On the uniform convergence in C1 of Fourier series for a spectral
problem with squared spectral parameter in a boundary condition. Differ. Equ. 47(10),
(2011), 1394-1399.

[9] N.Yu. Kapustin, E.I. Moiseev, A remark on the convergence problem for spectral
expansions corresponding to a classical problem with spectral parameter in the boundary
condition. Differ. Equ. 37(2), (2001), 1677-1683.

[10] N.B. Kerimov, Z. S. Aliev, Basis properties of a spectral problem with spectral pa-
rameter in the boundary condition, Sbornik: Mathematics, 197(10) (2006), 1467-1487.

[11] N.B. Kerimov, S. Goktas, E.A. Maris, Uniform convergence of the spectral expansions
in terms of root functions for a spectral problem. Electron. J. Differential Equations
2016(80) (2016), 1-14.

[12] N.B. Kerimov, E.A. Maris, On the uniform convergence of the Fourier Series for one
spectral problem with a spectral parameter in a boundary condition. Math. Methods
Appl. Sci. 39(9), (2016), 2298-2309.

[13] N.B. Kerimov, E.A. Maris, On the uniform convergence of fourier series expansions
for Sturm-Liouville problems with a spectral parameter in the boundary conditions,
Results Math., 73(3) (2018), 1-16.

[14] G.M. Keselman, On the unconditional convergence of eigenfunction expansions of
certain differential operators. Izv. Vyssh. Uchebn. Zaved. Mat. 39(2) (1964), 82-93 [in
Russian].



14 K.F. Abdullayeva

[15] E.A. Maris, S.A. Goktas, A study on the uniform convergence of spectral expansions
for continuous functions on a Sturm-Liouville problem, Miskolc Math. Notes, 20(2)
(2019), 1063-1081.

[16] M.A. Naimark, Linear Differential Operators, Ungar, New York, 1967.

[17] F. Roseau, Theory of vibration in mechanical systems. Analytical methods and appli-
cations, Berlin : Springer, 1987, 515 p.

Konul F. Abdullayeva
Sumgait State University, Sumgait, Azerbaijan
E-mail: konul.abdullayeva.15@mail.ru,

Received 05 February 2022
Accepted 12 March 2022


