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Inverse Boundary Value Problem for a Third-Order Par-
tial Differential Equation with an Additional Integral Con-
dition

A.I. Ismailov

Abstract. In the article the author analyses one inverse boundary problem for a partial differential
equation of third order with an Additional Integral Condition. First, an original problem is reduced
to the equivalent problem, the theorem of existence and uniqueness of solution is proved for the
latter. Then, using these facts the author proves existence and uniqueness of classical solution of
the original problem.
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1. Introduction

Inverse problems are an actively developing branch of modern mathematics. Recently,
inverse problems have arisen in various fields of human activity, such as seismology, mineral
exploration, biology, medicine, quality control of industrial products, etc., which puts them
among the actual problems of modern mathematics. Various inverse problems for certain
types of partial differential equations have been studied in many works.

Let us note here, first of all, the works of A.N. Tikhonov [1], M.M. Lavrentev [2, 3],
V.K. Ivanov [4] and their students. More details about this can be found in the monograph
by A.M. Denisov [5].

The purpose of this work is to prove the existence and uniqueness of solutions of
one inverse boundary value problem for a third order differential equation with partial
derivatives with an integral condition of the first kind.

In this work, using Fourier method and contraction mapping principle, we prove the
existence and uniqueness of the solution of the nonlocal inverse boundary value problem
for a third order two-dimensional pseudo parabolic equation.

http://www.cjamee.org 44 © 2013 CJAMEE All rights reserved.



Inverse Boundary Value Problem for a Third-Order Partial Differential Equation ... 45

2. Formulation of the inverse boundary value problem

Consider for the equation

∂2u(x, t)

∂t2
− ∂

∂t

(
a(t)

∂2u(x, t)

∂x2

)
= p(t)u(x, t) + f(x, t) (1)

in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} inverse boundary value problem with
initial conditions

u(x, 0) = ϕ(x) , ut(x, 0) = ψ(x) (0 ≤ x ≤ 1) , (2)

with Neumann boundary conditions

ux(0, t) = u(1, t) = 0 (0 ≤ t ≤ T ) , (3)

and with an additional integral condition∫ 1

0
g(x)u(x, t)dx = 0 (0 ≤ t ≤ T ) (4)

where a(t) > 0, f(x, t), ϕ(x), ψ(x), ω(x) , h(t) are given functions, and u(x, t) and p(t)
are unknown functions.

Let us introduce the notation

C̃2,2(DT ) = {u(x, t) : u(x, t) ∈ C2(DT ), utxx(x, t) ∈ C(DT )} .

Definition 1. Under the classical solution of the inverse boundary value problem (1)-(4)
we mean a pair {u(x, t), p(t) } of functions u(x, t), p(t) , if u(x, t) ∈ C̃2,2(DT ), p(t) ∈
C[0, T ] and the relations (1)-(4) are satisfied in the usual sense .

The following theorem is true.

Theorem 1. Let f(x, t) ∈ C(DT ), ψ(x) ∈ C[0, 1], ϕ(x) ∈ C[0, 1], h(t) ∈ C2[0, T ] ,
0 < a(t) ∈ C1[0, T ], h(t) 6= 0 (0 ≤ t ≤ T ) and the matching conditions are met∫ 1

0
g(x)ϕ(x)dx = 0,

∫ 1

0
g(x)ψ(x)dx = 0.

Then the problem of finding a classical solution to problem (1)-(4) is equivalent to the
problem of determining functions u(x, t) ∈ C̃2,2(DT ), p(t) ∈ C[0, T ], satisfying equation
(1), conditions (2), (3) and conditions

h′′(t)− d

dt

(
a(t)

∫ 1

0
g(x)

∂2u(x, t)

∂x2
dx

)
= p(t)h(t) +

∫ 1

0
g(x)f(x, t)dx (0 ≤ t ≤ T ). (5)

Proof. Let {u(x, t), p(t) } be a classical solution to problem (1)-(4). Since h(t) ∈
C2[0, T ], we differentiate (4) twice with respect to t, we get:∫ 1

0
g(x)ut(x, t)dx = h′(t) ,

∫ 1

0
g(x)utt(x, t)dx = h′′(t) (0 ≤ t ≤ T ). (6)
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We multiply equation (1) by the function g(x) and integrate the resulting equality
from 0 to 1 with respect to x, we have:

d2

d t2

∫ 1

0
g(x)u(x, t)dx− d

dt

(
a(t)

∫ 1

0
g(x)

∂2u(x, t)

∂x2
dx

)
=

= p(t)

∫ 1

0
g(x)u(x, t)dx+

∫ 1

0
g(x)f(x, t)dx ( 0 ≤ t ≤ T ) . (7)

Hence, taking into account (4) and (6), we easily arrive at the fulfillment of (5).
Now, suppose that {u(x, t), p(t)} is a solution to problem (1)-(3), (5).
Then from (5) and (7) we get:

d2

dt2

∫ 1

0
g(x)u(x, t)dx = p(t)

∫ 1

0
g(x)u(x, t)dx (0 ≤ t ≤ T ). (8)

Due to (2) and
∫ 1
0 g(x)ϕ(x)dx = 0,

∫ 1
0 g(x)ψ(x)dx = 0 it is clear that∫ 1

0
g(x)u(x, 0)dx =

∫ 1

0
g(x)ϕ(x)dx = 0,

∫ 1

0
g(x)ut(x, 0)dx =

∫ 1

0
g(x)ψ(x)dx = 0. (9)

From (8) and (9) we conclude that condition (4) is satisfied. Theorem is proved.

3. On the solvability of the inverse boundary value problem

The first component u(x, t) of the solution {u(x, t), p(t)} of problem (1)-(3), (5) will
be sought in the form:

u(x, t) =

∞∑
k=1

uk(t) cosλkx
(
λk =

π

2
(2k − 1)

)
, (10)

where

uk(t) = 2

∫ 1

0
u(x, t) cosλkxdx (k = 1, 2, ...).

Then, applying the formal scheme of the Fourier method, from (1), (2), we obtain:

u′′k(t) + λ2k(a(t)uk(t))
′ = Fk(t;u, p) (k = 1, 2, ...; 0 ≤ t ≤ T ), (11)

uk(0) = ϕk, u
′
k(0) = ψk (k = 1, 2, ...), (12)

where

Fk(t;u, p) = fk(t) + p(t)uk(t), fk(t) = 2

∫ 1

0
f(x, t) cosλkxdx, ,

ϕk = 2

∫ 1

0
ϕ(x) cosλkxdx, ψk = 2

∫ 1

0
ψ(x) cos λkxdx (k = 1, 2, ...).



Inverse Boundary Value Problem for a Third-Order Partial Differential Equation ... 47

Solving problem (11), (12) we find:

uk(t) = ϕk

(
e−λ

2
k

∫ t
0 a(s)ds + λ2ka(0)

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

)
+ ψk

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ+

+

∫ t

0
Fk(η;u, p)

(∫ t

η
e−λ

2
k

∫ t
τ a(s)dsdτ

)
dη (k = 1, 2, ...). (13)

Differentiating twice (21) we obtain:

u′k(t) = −λ2kϕk
(
a(t)e−λ

2
k

∫ t
0 a(s)ds − a(0)

(
1− λ2ka(t)

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

))
+

+ψk

(
1− λ2ka(t)

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

)
+

+

∫ t

0
Fk(η;u, p, q)

(
1− λ2ka(t)

∫ t

η
e−λ

2
k

∫ t
τ a(s)dsdτ

)
dη (k = 1, 2, ...), (14)

u′′k(t) = −λ2kϕk
(

(a′(t)− λ2ka2(t))e−λ
2
k

∫ t
0 a(s)ds + λ2ka(0)(a′(t)−

−λ2ka2(t))
∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

)
− λ2kψk(a′(t)− λ2ka2(t))

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ−

−λ2k
∫ t

0
Fk(η;u, p)

(
(a′(t)− λ2ka2(t))

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ + a(t)

)
dη+

+Fk(t;u, p) (k = 1, 2, ...). (15)

After substituting the expression uk(t) (k = 1, 2, ...) from (13) into (10), to determine
the the component u (x, t) of the solution of problem (5) we obtain:

u(x, t) =

∞∑
k=1

{
ϕk

(
e−λ

2
k

∫ t
0 a(s)ds + λ2ka(0)

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

)
+

+ψk

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ +

∫ t

0
Fk(η;u, p)

(∫ t

η
e−λ

2
k

∫ t
τ a(s)dsdτ

)
dη

}
cosλkx . (16)

Now from (5), taking into account (10), we get:

p(t) = [h(t)]−1
{
h′′(t)−

∫ 1

0
g(x)f(x, t)dx +

∞∑
k=1

nkλ
2
k(a(t)uk(t))

′

}
, (17)

where

nk =

∫ 1

0
g(x) cosλkxdx. (18)
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Further, from (18), by virtue of (25) we find:

λ2k(a(t)uk(t))
′ = −u′′k(t) + Fk(t;u, p, q) =

= λ2kϕk

(
(a′(t)− λ2ka2(t))

(
e−λ

2
k

∫ t
0 a(s)ds + λ2ka(0)

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

))
+

+λ2kψk(a
′(t)− λ2ka2(t))

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ+

+λ2k

∫ t

0
Fk(η;u, p)

(
(a′(t)− λ2ka2(t))

∫ t

η
e−λ

2
k

∫ t
τ a(s)dsdτ + a(t)

)
dη (k = 1, 2, ... ) (19)

In order to obtain an equation for the second component p(t) of the solution {u(x, t), p(t)}
of problem (1)-(3), (5) we substitute the expression λ2k(a(t)uk(t))

′ (k = 1, 2, ...) from (19)
to (17) . We have:

p(t) = [h(t)]−1
{
h′′(t)−

∫ 1

0
g(x)f(x, t)dx +

+

∞∑
k=1

nk

[
λ2kϕk

(
(a′(t)− λ2ka2(t))

(
e−λ

2
k

∫ t
0 a(s)ds + λ2ka(0)

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ

))
+

+λ2kψk(a
′(t)− λ2ka2(t))

∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ+

+λ2k

∫ t

0
Fk(η;u, p)

(
(a′(t)− λ2ka2(t))

∫ t

η
e−λ

2
k

∫ t
τ a(s)dsdτ + a(t)

)
dη

]}
, (20)

Thus, the solution of problem (1)-(3), (5) is reduced to the solution of system (16),
(20) with respect to unknown functions u(x, t) and p(t).

To study the question of the uniqueness of the solution of problem (1) - (3), (5), the
following lemma plays an important role.

Lemma 1. If {u(x, t), p(t)} - be any solution to the problem (1)-(3), (5), then the functions

uk(t) = 2

∫ 1

0
u(x, t) cosλkxdx (k = 1, 2, ...)

satisfy the system consisting of equations (13).

It is obvious that if uk(t) = 2
∫ 1
0 u(x, t) cosλkxdx(k = 1, 2, ...) is a solution to system

(20) and (21), then the pair {u(x, t), p(t)} of a function u(x, t) =
∑∞

k=0 uk(t) cosλkx and
p(t) are solutions to system (16), (20) .

It follows from Lemma 1 that the following corollary holds.

Corollary 1. Let system (16), (20) have a unique solution. Then problem (1)-(3), (5)
cannot have more than one solution, i.e. if problem (1)-(3), (5) has a solution, then it is
unique.
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1. Denote by B3
2,T , the set of all functions u(x, t) of the form

u(x, t) =

∞∑
k=1

uk(t) cosλkx ,

considered in DT , where each of the functions uk(t) (k = 1, 2, ...) is continuous on [0, T ]
and

I(u) ≡

{ ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

} 1
2

< +∞.

We define the norm on this set as follows:

‖u(x, t)‖B3
2,T

= I(u).

2. Denote by E3
T the space consisting of the topological product

B3
2,T × C[0, T ] .

The norm of an element z = {u, p} is defined by the formula

‖z‖E3
T

= ‖u(x, t)‖B3
2,T

+ ‖p(t)‖C[0,T ] .

It is known that B3
2,T and E3

T are Banach spaces.

Now consider in space E3
T the operator

Φ(u, a) = {Φ1(u, p),Φ2(u, p)} ,

where

Φ1(u, p) = ũ(x, t) = 1

∞∑
k=0

ũk(t) cosλkx,Φ2(u, p) = p̃(t).

and ũk(t) and p̃(t) are equal to the right-hand sides of (13) and (20), respectively.
It is easy to see that∫ t

0
e−λ

2
k

∫ t
τ a(s)dsdτ ≤ 1

mλ2k
,

∫ t

η
e−λ

2
k

∫ t
τ a(s)dsdτ ≤ 1

mλ2k
,

where m = min
0≤t≤T

a(t).

Considering these relations, we find:( ∞∑
k=1

(
λ3k ‖ũk(t)‖C[0,T ]

)2) 1
2

≤ 2

(
1 +

a(0)

m

)( ∞∑
k=1

(
λ3k |ϕk|

)2) 1
2

+

+
2

m

( ∞∑
k=1

(λk |ψk|)2
) 1

2

+
2
√
T

m

(∫ T

0

∞∑
k=1

(λk |fk(τ)|)2 dτ

) 1
2

+
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+
2T

m
‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λ2k ‖uk(t)‖C[0,T ]

)2) 1
2

, (21)

‖p̃(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′′(t)− ∫ 1

0
g(x)f(x, t)dx

∥∥∥∥ C[0,T ] +

+

( ∞∑
k=1

λ−2k

) 1
2

(
∥∥a′(t)∥∥

C[0,T ]
+
∥∥a2(t)∥∥

C[0,T ]
)×

×‖g(x)‖L2(0,1)

(1 +
a(0)

m

)( ∞∑
k=1

(
λ5k |ϕk|

)2) 1
2

+
1

m

( ∞∑
k=1

(
λ3k |ψk|

)2) 1
2

+

+

√
T

m

(∫ T

0

∞∑
k=1

(
λ3k |fk(τ)|

)2
dτ

) 1
2

+
T

m
‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λ3k ‖uk(t)‖C[0,T ]

)2) 1
2

  ,

(22)

Let us assume that the data of problem (1)-(3), (5) satisfy the following conditions:

1) ϕ(x) ∈ C4 [0, 1] , ϕ(5)(x) ∈ L2(0, 1),

ϕ′(0) = ϕ(1) = ϕ′′′(0) = ϕ′′(1) = ϕ(4)(1) = 0 ,

2) ψ(x) ∈ C2 [0, 1] , ψ′′′(x) ∈ L2(0, 1), ψ′(0) = ψ(1) = ψ′′(1) = 0 .

3) f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ),

fx(0, t) = f(1, t) = fxx(1, t) = 0 (0 ≤ t ≤ T ) ,

4) b(x) ∈ L2(0, 1), 0 < a(t) ∈ C1[0, T ], h(t) ∈ C2[0, T ] , h(t) 6= 0 (0 ≤ t ≤ T ) .

Then from (21) , (22), we get:

‖ũ(x, t)‖B3
2,T
≤ A1(T ) +B1(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
, (23)

‖p̃(t)‖C[0,T ] ≤ A2(T ) +B2(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B3
2,T
. (24)

where

A1(T ) = ‖ϕ(x)‖L2(0,1)
+ T ‖ψ(x)‖L2(0,1)

+ T
√
T ‖f(x, t)‖L2(DT )

+

A1(T ) = 2

(
1 +

a(0)

m

)∥∥ϕ′′′(x)
∥∥
L2(0,1)

+
2

m

∥∥ψ′(x)
∥∥
L2(0,1)

+
2
√
T

m
‖fx(x, t)‖L2(DT )

,

B1 (T ) =
2T

m
,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′′(t)− ∫ 1

0
g(x)f(x, t)dx

∥∥∥∥ C[0,T ] +
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+

( ∞∑
k=1

λ−2k

) 1
2

(
∥∥a′(t)∥∥

C[0,T ]
+
∥∥a2(t)∥∥

C[0,T ]
) ‖g(x)‖L2(0,1)

×

×
[(

1 +
a(0)

m

)∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+
1

m

∥∥ψ′′′(x)
∥∥
L2(0,1)

+

√
T

m
‖fxxx(x, t)‖L2(DT )

]}

B2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2 (∥∥a′(t)∥∥

C[0,T ]
+
∥∥a2(t)∥∥

C[0,T ]

) T
m
.

From inequalities (23), (24) we conclude:

‖ũ(x, t)‖B3
2,T

+ ‖p̃(t)‖C[0,T ] ≤ A(T ) +B(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B3
2,T
. (25)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ) .

So, we can prove the following theorem:

Theorem 2. Let conditions 1)-4) be satisfied and

B(T )(A(T ) + 2)2 < 1 , (26)

Then problem (1)-(3), (5) has a unique solution in the ball K = KR(‖z‖E3
T
≤ R =

= A(T ) + 2) of space E3
T .

Proof. In space E3
T consider the following equation

z = Φz, (27)

where z = {u, p}, components Φi(u, p )(i = 1, 2) of the operator (u, p) are defined by the
right-hand sides of equations (16), (20), respectively. Consider the operator Φ(u, p) in the
ball K = KR(‖z‖E3

T
≤ R = A(T ) + 2) from E3

T .

Similarly to (23), we obtain that for any z, z1, z2 ∈ KR the estimates

‖Φz‖E3
T
≤ A(T ) +B(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
≤ A(T ) +B(T )(A(T ) + 2)2 , (28)

‖Φz1 − Φz2‖E3
T
≤≤ B(T )R

(
‖u1(x, t)− u2(x, t)‖B3

2,T
+ ‖p1(t)− p2(t)‖C[0,T ]

)
. (29)

are valid. Then from the estimates (28) and (29), taking into account (26), it follows that
the operator Φ acts in the ball K = KRand is contractive. Therefore, in the ball K = KR

the operator Φ has a unique fixed point {u, p}, which is the only solution of the equation
(27), i.e. is the unique solution in the ball K = KR of the system. The function u(x, t), as
an element of space B3

2,T , is continuous and has continuous derivatives ux(x, t), uxx(x, t) ,
in DT .

It can be shown that utt(x, t),utxx(x, t), are continuous in DT .
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It is easy to check that equation (1) and conditions (2), (3), and (5) are satisfied in
the usual sense. Consequently, {u(x, t), p(t)} is a solution to problem (1)-(3), (5), and, by
virtue of the corollary of Lemma 1, it is unique in the ball K = KR. Theorem is proved.

Using Theorem 1, we prove the following.

Theorem 3. Let all conditions of Theorem 2 be satisfied and∫ 1

0
g(x)ϕ(x)dx = h(0) ,

∫ 1

0
g(x)ψ(x)dx = h′(0) .

Then problem (1)-(4) has a unique classical solution in the ball K = KR(‖z‖E3
T
≤ R =

A(T ) + 2) of space E3
T .
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