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On the Basicity of Eigenfunctions of a Non-self-adjoint
Spectral Problem with a Spectral Parameter in the
Boundary Condition in Lebesgue Spaces

T.B. Gasymov∗, U.G. Hashimova, R.J. Taghiyeva

Abstract. In this work we consider the following spectral problem

−y′′ + q (x) y = λy, x ∈ (0, 1) ,

y(0) = 0
y′(0) = (aλ+ b)y(1)

}
,

where q(x) is a complex-valued summable function, λ is a spectral parameter, a and b are arbitrary
complex numbers ( a 6= 0). We prove theorems on the basicity of eigenfunctions and associated
functions of the spectral problem in the Lebesgue spaces Lp(0, 1) ⊕ C and Lp (0, 1) , 1 < p < ∞,
as well as in their weighted analogs with a general weight function satisfying the Mackenhaupt
condition.
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1. Introduction

Consider the following spectral problem:

−y′′ + q (x) y = λy, x ∈ (0, 1) , (1)

y(0) = 0,
y′(0) = (aλ+ b)y(1),

}
(2)

where q(x) is a complex-valued summable function, λ is a spectral parameter, a and b are
arbitrary complex numbers ( a 6= 0). In this work it is proved the theorems on the basicity
of eigenfunctions and associated functions of the spectral problem in the Lebesgue spaces
Lp(0, 1)⊕ C and Lp (0, 1) , 1 < p <∞, as well as in their weighted analogs with a general
weight function satisfying the Mackenhaupt condition. Numerous works are devoted to

∗Corresponding author.

http://www.cjamee.org 31 c© 2013 CJAMEE All rights reserved.



32 T.B. Gasymov, U.G. Hashimova, R.J. Taghiyeva

spectral problems for ordinary differential operators with a spectral parameter in boundary
conditions (see, e.g., [1-16]). Of the latter, let us note the works [17-26]. The works
[8,9,14,25,26,27,28] are directly related to our work. The case q (x) ≡ 0, b = 0 is considered
in [8,9]. The case b = 0, was considered in [14], and other generalizations of boundary
conditions (2) were considered in [25,26]. Note that the theorems on the basicity in
Lp (0, 1) under the additional assumption q (x) = q(1−x), and the theorems on the uniform
convergence of spectral expansions for the potential q (x) from class L2 (0, 1) were proved in
[14,25,26]. In [27], asymptotic formulas for the eigenvalues (1),(2) and eigenfunctions were
found, and in [28], theorems on the completeness and minimality of the root functions of
problem (1),(2) in the Lebesgue spaces Lp(0, 1)⊕C and Lp (0, 1) , 1 < p <∞ were proved.

2. Needed information and preliminary results

In obtaining the main results, we need some concepts and facts from the theory of
bases in a Banach space.

Definition 1. A basis {un}n∈N of a space X is called a p-basis, if for any x ∈ X the
condition ( ∞∑

n=1

|〈x, ϑn〉|p
) 1

p

≤M ‖x‖ ,

is fulfilled, where {ϑn}n∈N is a biorthogonal system to {un}n∈N .

Definition 2. Sequences {un}n∈N and {φn}n∈N of a Banach space X are said to be p
close if the condition

∞∑
n=1

‖un − φn‖p <∞,

is fulfilled.

Let us recall that two systems in a Banach space are said to be isomorphic (or equiv-
alent) if there exists a bounded linear operator in this space with a bounded inverse that
maps one of these systems to the other. We will also use the following result from [29],
which is a Banach analogue of the well-known theorem of N.K. Bari [30].

Theorem 1. ([29]) Let {xn}n∈N be a q-basis of a Banach space X, and let the system
{yn}n∈N be a p-close to {xn}n∈N , where 1

p + 1
q = 1. Then the following properties are

equivalent:

a) {yn}n∈N is complete in X;

b) {yn}n∈N is minimal in X;

c) {yn}n∈N is ω− linearly independent in X;

d) {yn}n∈N forms a basis for X;

e) {yn}n∈N forms a basis in X, isomorphic to the system {xn}n∈N ;

f) {yn}n∈N forms a q-basis for X.
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Let X1 = X⊕Cm and {ûn}n∈N ⊂ X1 be some minimal system, and
{
ϑ̂n

}
n∈N

⊂ X∗1 =

X∗ ⊕ Cm is its biorthogonal system:

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m natural numbers. Assume

δ = det ‖βnij‖ i,j=1,m.

The following theorem was proved in [31] (see also [32]).

Theorem 2. Let the system {ûn}n∈N form a basis for X1. For the system {un}n∈NJ
,

where NJ = N\J , to be a basis in X, it is necessary and sufficient that the condition
δ 6= 0 be satisfied. In this case, the system biorthogonal to {un}n∈NJ

is defined by the
equality

ϑ∗n =
1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 . . . ϑnm

βn1 βn11 . . . βnm1

. . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
In particular, if X is a Hilbert space and {ûn}n∈N is a Riesz basis in X1, then under the
condition δ 6= 0, the system {un}n∈NJ

also forms a Riesz basis for X.

For δ = 0 the system {un}n∈NJ
is neither complete nor minimal in X.

We will need some results from [27,28]. In [27] it was proved that the eigenvalues of
problem (1),(2) are asymptotically simple and have the form λn = ρ2n, n = 0, 1, 2, ..., where
the following asymptotic formula holds for the numbers ρn:

ρn = πn+O

(
1

n

)
, (3)

and for the eigenfunctions and associated functions yn (x) of problem (1),(2) corresponding
to the eigenvalues λn, n = 0, 1, 2, ..., the asymptotic formula

yn (x) = sinπnx+O

(
1

n

)
, (4)

is valid, moreover, the problem can have only a finite number of associated functions, and
the eigenvalues are numbered taking into account their multiplicities.

The conjugate spectral problem has the form

−z′′ + q (x)z = λz, x ∈ (0, 1) , (5)

z(1) = 0,

z
′
(1) +

(
aλ+ b

)
z (0) = 0.

}
(6)
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The spectral problem (1),(2) is reduced to a spectral problem Lŷ = λŷ for the operator
L, acting in the space Lp(0, 1)⊕ C. The operator L is defined as follows:

D (L) =
{
ŷ = (y (x) , ay (1)) , y (x) ∈W 2

p (0, 1) , l (y) ∈ Lp (0, 1) , y (0) = 0
}
,

∀ŷ ∈ D (L) : Lŷ =
(
l (y) , y′ (0)− by (1)

)
.

It was proved in [28] that the operator L is densely defined in Lp(0, 1) ⊕ C as a closed
operator with a compact resolvent. The eigenvalues of the operator L and problem (1),(2)
coincide, and each eigen(or associated) function y (x) of problem (1),(2) corresponds to an
eigen(or associated) vector ŷ = (y (x) , ay (1)) of the operator L. The adjoint operator L∗ is
defined as the operator generated in the space Lq (0, 1)⊕C, 1

p + 1
q = 1, by problem (5),(6).

The eigenfunctions and associated functions of problem (5),(6) satisfy the asymptotic
formulas

zn (x) = 2 sinπnx+O

(
1

n

)
, n = 0, 1, 2, ..., (7)

where the eigenfunctions and associated functions zn (x) are normalized so that the biorthog-
onality conditions are satisfied

〈ŷn, ẑk〉 =

∫ 1

0
yn (x) zk (x)dx+ a2yn (1) zk (0) = δnk,

where ẑk = (zk (x) , āzk (0)) are the eigenvectors and associated vectors of the adjoint
operator L∗, and δnk is the Kronecker symbol.

The following theorems are also true.

Theorem 3. ([28]) The root vectors of the operator L form a complete and minimal
system in the space Lp (0, 1)⊕ C, 1 < p <∞.

Theorem 4. ([28]) The system {yn (x)}∞n=0,n6=n0
of eigenfunctions and associated func-

tions of problem (1),(2) with one rejected eigenfunction yn0 (x), corresponding to a simple
eigenvalue λn0, forms a complete and minimal system in the space Lp (0, 1) , 1 < p < ∞.
The corresponding biorthogonal system is {ϑn (x)}∞n=0,n6=n0

, where

ϑn (x) = zn (x)− zn (0)

zn0 (0)
zn0 (x) . (8)

3. Main results

3.1. Basicity in spaces Lp(0, 1)⊕ C and Lp(0, 1).

Let en(x) = sinπnx, n ∈ N and introduce the following system in space Lp(0, 1)⊕ C:

ê0 = (0, 1), ên = (en(x), 0), n ∈ N.

The following theorem is true.
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Theorem 5. The system {ŷn}∞n=0 , eigenvectors and associated vectors of the operator L
forms a basis for Lp(0, 1)⊕ C, 1 < p <∞, isomorphic to the system {ên}∞n=0.

Proof. From the formula (4) it follows

yn = en +O

(
1

n

)
, yn(1) = O

(
1

n

)
.

On the other hand

ŷn = (yn (x) , ayn (1)) = ên + O

(
1

n

)
.

Therefore, for any r > 1 :
∞∑
n=0

‖ŷn − ên‖r < +∞, (9)

i.e. the system {ŷn}∞n=0 is r− close to the system {ên}∞n=0, and by Theorem 3 the system
{ŷn}∞n=0 is complete and minimal in Lp(0, 1)⊕ C.

Let 1 < p ≤ 2, and q – be its conjugate number: 1
p + 1

q = 1. By the Hausdorff-Young
inequality [33] for any function f ∈ Lp(0, 1)( ∞∑

n=1

|〈f, en〉|q
) 1

q

≤ C‖f‖Lp
.

Then for any element f̂ = (f, β) ∈ Lp(0, 1)⊕ C we have( ∞∑
n=0

∣∣∣〈f̂ , ên〉∣∣∣q)
1
q

≤ |β|+

( ∞∑
n=1

|〈f, en〉|q
) 1

q

≤ |β|+ ‖f‖Lp
≤ C1

∥∥∥f̂∥∥∥
Lp⊕C

.

Consequently, the system {ên}∞n=0 is a q - basis in Lp(0, 1) ⊕ C. Now, choosing r = p in
(9) we get that all the conditions of Theorem 2 are satisfied, therefore, the system {ŷn}∞n=0

forms a basis for Lp(0, 1)⊕ C, equivalent to the system {ên}∞n=0.
Let, now p > 2. Then 1 < q < 2 and the embedding

Lp(0, 1) ⊂ Lq(0, 1)

or
Lp(0, 1)⊕ C ⊂ Lq(0, 1)⊕ C

holds, and for f̂ ∈ Lp(0, 1)⊕ C we have( ∞∑
n=0

∣∣∣〈f̂ , ên〉∣∣∣p)
1
p

≤ c
∥∥∥f̂∥∥∥

Lq⊕C
≤ c1

∥∥∥f̂∥∥∥
Lp⊕C

i.e. the system {ên}∞n=0 is a p-basis in Lp (0, 1) ⊕ C. Choosing r = q we get that all the
conditions of Theorem 2 are satisfied, which means that in this case the system {ŷn}∞n=0

forms a basis for Lp (0, 1)⊕ C, equivalent to the system{ên}∞n=0. Theorem is proved.
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Corollary 1. In the case p=2 the system {ŷn}∞n=0 forms a Riesz basis for L2(0, 1)⊕ C.

Theorem 6. In order for the system {yn(x)}∞n=0, n 6=n0
of root functions of problem (1)

and (2) with one remote function yn0(x) to form a basis for Lp(0, 1), 1 < p < ∞, it is
necessary and sufficient that the condition zn0 (0) 6= 0 be satisfied. If zn0 (0) = 0, then the
system {yn(x)}∞n=0, n 6=n0

is not complete and minimal, and even more so is not a basis
in Lp(0, 1).

The proof follows from Theorem 5 followed by the application of Theorems 2 and 4.

Theorem 7. The eigenfunctions and associated functions {yn(x)}∞n=0, n6=n0
of problem

(1) and (2) with one remote eigenfunction yn0(x), corresponding to a simple eigenvalue
λn0 forms a basis for Lp (0, 1), 1 < p < ∞, isomorphic to the trigonometric system
{sinπnx }∞n=1.

Proof. If λn0 is a simple eigenvalue, then it corresponds to one eigenfunction yn0(x)
and zn0(x) is the corresponding eigenfunction of the adjoint problem (5), (6). It should
be noted that for all eigenfunctions zn(x) of the adjoint problem, the condition zn(0) 6= 0
is satisfied. Indeed, let zn (0) = 0, then from the second boundary condition (6) we obtain
z
′
n (1) = 0, and this together with the first boundary condition zn (1) = 0 means that
zn(x) is the solution of Cauchy problem

−z′′ + q (x) z = λz,

z (1) = z
′
(1) = 0,

which has only the trivial solution z (x) ≡ 0. And this contradicts the fact that zn(x) is
an eigenfunction. Thus zn0(1) 6= 0. Then, by Theorem 6, the system {yn(x)}∞n=0, n6=n0

forms a basis for Lp (0, 1). It follows from the asymptotic formulas (4) that ∀r ∈ (1; +∞)

∞∑
n=n0+1

‖yn − en‖r < +∞

i.e. the system {yn(x)}∞n=0, , n6=n0
is r− close to the system {en}∞n=1 (en (x) = sinπnx ).

Choosing r = min {p, q}, and taking into account that the system {en}∞n=1 is an r
′−basis

in Lp(0, 1) for the system {yn(x)}∞n=0, n 6=n0
(r′ = max {p, q}, 1

r + 1
r′ = 1), we find that

all conditions of Theorem 1 are satisfied and, therefore, it is isomorphic to the system
{sinπnx }∞n=1. Theorem is proved.

Corollary 2. Under the conditions of Theorem 7, the system {yn(x)}∞n=0, n6=n0
forms a

r− basis for Lp (0, 1), 1 < p <∞, where r = max {p, q}.

Corollary 3. In the case p = 2 the system {yn(x)}∞n=0, n6=n0
forms a Riesz basis for

L2(0, 1).
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3.2. Basicity in spaces

Lp,ω (0,1) ⊕C and Lp,ω(0,1).
Denote by Lp,ω (0, 1) the weighted Lebesgue space with the norm

‖f‖Lp,ω
=

(∫ 1

0
|f (x)|pω (x) dx

) 1
p

,

where the weight function ω (x) belongs to the Mackenhaupt class Ap, i.e. satisfies the
condition

sup
I⊂(0,1)

(
1

|I|

∫
I
ω (x) dx

)(
1

|I|

∫
I

(ω (x))
− 1

p−1dx

)p−1
< +∞.

It was proved in [34] that if ω (x) ∈ Ap, then there exists a number r ∈ (1, p) such that
ω (x) ∈ Ar. Using this fact, we prove the following

Lemma 1. Let the weight function ω (x) belong to the class Ap, 1 < p < ∞. Then there
exists a number p0: 1 < p0 < p, such that a continuous embedding Lp,ω (0, 1) ⊂ Lp0 (0, 1)
holds.

Proof. Let f ∈ Lp,ω (0, 1). Assume p0 = p
r . Then |f (x)|p0 = |f (x)|p0ω

p0
p (x)ω

− p0
p (x)

and from belonging of the function |f (x)|p0ω
p0
p (x) to the class L p

p0
(0, 1), and also from

belonging of the function ω
− p0

p (x) to the class
(
L p

p0
(0, 1)

)∗
= L p

p−p0
(0, 1), and using

the Hölder inequality, we obtain

‖f‖Lp0 (0,1) =

(∫ 1

0
|f (x)|p0dx

) 1
p0

=

(∫ 1

0
|f (x)|p0ω

p0
p (x)ω

− p0
p (x)dx

) 1
p0

≤

≤
(∫ 1

0
|f (x)|pω (x) dx

) 1
p
(∫ 1

0
ω
− p0

p−p0 (x) dx

) p−p0
pp0

= ‖f‖Lp,ω (0,1)

(∫ 1

0
ω−

1
r−1 (x) dx

) r−1
p

=

= Kp,r(ω)‖f‖Lp,ω (0,1).

Since ω−1 ∈ L 1
r−1

(0, 1), then the quantity Kp,r(ω) =
(∫ 1

0 ω
− 1

r−1 (x) dx
) r−1

p
has a finite

value. Consequently, f ∈ Lp0 (0, 1).

Corollary 4. If f ∈ Lp,ω (0, 1), then ∀s ∈ (0, p0] , i.e. ∀s ∈
(
0, pr
]

: f ∈ Ls (0, 1).

Lemma 2. Let ω ∈ Ap (0, 1) . Then each of the systems {sinπnx }∞n=1 and {cosπnx }∞n=0

forms a basis for Lp,ω (0, 1).

Proof. Denote by ω̃ (x) the even extension of the function ω (x) to [−1, 1], i.e. for
x ∈ [−1, 0] ω̃ (x) = ω (−x), or x ∈ [0, 1] ω̃ (x) = ω (x). Then it is evident that
ω̃ (x) ∈ Ap(−1, 1). Let f ∈ Lp,ω (0, 1). Let’s extend it to [−1, 1] in an odd way, i.e.

f̃ (x) =

{
f (x) , x ∈ [0, 1] ,

−f (−x) , x ∈ [−1, 0] .
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Then f̃(x) ∈ Lp,ω̃ (−1, 1). We expand this function in the basis
{
e iπnx

}+∞
n=−∞:

f̃ (x) =
+∞∑

n=−∞
ane

iπnx, an =
1

2

∫ 1

−1
f̃ (x)e−iπnxdx.

It is obvious that

an =
1

2

∫ 1

0
f (x)e−iπnxdx− 1

2

∫ 0

−1
f (−x)e−iπnxdx =

=
1

2

∫ 1

0
f (x) (e−iπnx − eiπnx)dx =

1

i

∫ 1

0
f (x) sinπnx dx.

In addition a−n=-an, a0 = 0. Taking into account these relations, we get
m∑

n=−m
ane

iπnx =
m∑
n=1

an(eiπnx − e−iπnx) =

= 2i
m∑
n=1

ansinπnx =
m∑
n=1

〈f, 2sinπnt 〉sinπnx .

Hence∥∥∥∥∥f̃ (x)−
m∑

n=−m
ane

iπnx

∥∥∥∥∥
Lp,ω (−1,1)

=

∥∥∥∥∥f̃ (x)−
m∑
n=1

〈f, 2sinπnt 〉sinπnx

∥∥∥∥∥
Lp,ω (−1,1)

=

= 2
1
p

∥∥∥∥∥f (x)−
m∑
n=1

〈f, 2sinπnt 〉sinπnx

∥∥∥∥∥
Lp,ω (0,1)

.

The left side of the last equality tends to zero as m→∞, which means that the right
side tends to zero as m → ∞, and it means that the system {sinπnx }∞n=1 forms a basis
for Lp,ω (0, 1).

The basicity of the system {cosπnx }∞n=0 in Lp,ω (0, 1) is proved similarly. To do this,
it suffices to take an even extension of the function f (x) to [−1, 1].

Theorem 8. The system {ŷn}∞n=0 of root vectors of the operator L forms a basis for
Lp,ω (0, 1)⊕ C isomorphic to the system {ên}∞n=0.

Proof. From the continuity of the embedding

Lp,ω (0, 1)⊕ C ⊂ Lp0 (0, 1)⊕ C,

and also from the minimality of the system {ŷn}∞n=0 (according to Theorem 3) in the
space Lp0 (0, 1) ⊕ C it follows that this system is also minimal in Lp,ω (0, 1) ⊕ C. It
follows from asymptotic formulas (4) that

yn (x) = en (x) + εn (x) (10)
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where for εn (x) uniformly with respect to x∈ [0, 1] the estimate

|εn (x)| ≤ const

n
, (11)

is valid. Taking into account estimate (11), from (10) we obtain

‖ŷn − ên‖Lp,ω (0,1)⊕C =

(∫ 1

0
|εn (x)|pω (x) dx

) 1
p

≤ const

n
.

Consequently, ∀τ ∈ (1; +∞)
∞∑
n=0

‖ŷn − ên‖τ<+∞, (12)

i.e. the system {ŷn}∞n=0 is τ−close to the system {ên}∞n=0 for any τ ∈ (1; +∞). On
the other hand, according to Corollary 3, a continuous embedding

Lp,ω (0, 1) ⊕ C ⊂ Ls (0, 1) ⊕ C,

holds, ∀s ∈ (1, p0]. Then, choosing 1 < s < min {2, p0} and applying the Hausdorff-Young
inequality for the system {en(x)}∞n=1 (en (x) = sinπnx ), we obtain ∀f̂ = (f(x), β) ∈
Lp,ω(0, 1)⊕ C ( ∞∑

n=0

∣∣∣〈f̂ , ên〉∣∣∣s′)
1

s
′

≤ |β|+

( ∞∑
n=1

|〈f, en〉|s
′
) 1

s
′

≤

≤ |β|+ c2‖f‖Ls
≤ c3

∥∥∥f̂∥∥∥
Ls (0,1) ⊕C

≤ c4‖f‖Lp,ω ⊕C .

The latter means that the system {ên}∞n=0 forms an s
′
–basis for Lp,ω (0, 1), where s

′
=

s/(s− 1) . Choosing τ = s, in (12) we obtain that all the conditions of Theorem 1 are
satisfied, therefore, the system {ŷn}∞n=0 forms a basis for Lp,ω (0, 1)⊕C isomorphic to the
system {ên}∞n=0 .

Similarly to the previous section, we prove that the following theorems and corollaries
are true.

Theorem 9. For the basicity of the system {yn(x)}∞n=0, n6=n0
of eigenfunctions and as-

sociated functions of problem (1), (2) with one remote function yn0(x) in Lp,ω (0, 1) it is
necessary and sufficient that the condition zn0(0) 6= 0 be satisfied. For zn0 (0) = 0 the
system {yn(x)}∞n=0, n 6=n0

does not form a basis in the space Lp,ω (0, 1) . Moreover, in
this case the system {yn(x)}∞n=0, n 6=n0

is neither complete nor minimal in Lp,ω (0, 1) .

Theorem 10. The system {yn(x)}∞n=0, n6=n0
corresponding to eigenfunctions and associ-

ated functions of problem (1), (2) with one removed function yn0 (x) , corresponding to a
simple eigenfunction value λn0, forms a basis for Lp,ω (0, 1) , 1 < p <∞, isomorphic to
the trigonometric system {sinπnx }∞n=1.

Corollary 5. Under the conditions of Theorem 10, the system {yn(x)}∞n=0, n6=n0
forms an

s–basis in Lp,ω (0, 1) for some s > 2.
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