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Nodal Solutions of Certain Boundary Value Problem for
Fourth Order Ordinary Differential Equations

N.A. Neymatov, R.G. Poladov

Abstract. In this paper, we consider a nonlinear boundary value problem for fourth order ordinary
differential equations. We show the existence of two different solutions of this problem with a fixed
number of simple zeros.
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1. Introduction

We consider the following nonlinear boundary value problem

U(y) = (p(x)y")" = (g(x)y') = o7 (x)g(y(x)), = € (0,1), (L.1)

y'(0) cosa — (py")(0) sina = 0,
y(0) cos B+ Ty(0)sin B = 0,
y' (1) cosy + (py”) (1) siny =0,
y(l)cosd —Ty(l)sind = 0,

]

Ty = (py") —qy's p € C*([0,1]; (0, +00)), ¢ € C* ([0,1];[0, +00)), 7 € C([0,1]; (0, +00)),
0 is a positive parameter, and «, 3,7, J are real constants such that 0 < a, 8,7, < 5
(the cases a =7 =0, =0 =7n/2and o = f = = § = 7/2 are excluded ). The
nonlinear term g € C° ([07 1] x R3; R) and satisfies the following conditions:

(B1) sg(s) > 0 for any s € R, s # 0;

(B2) there exist positive constants gy and g such that

go = lim ﬁ, Joo = lim @
[s|—»0 S8 [s|>4+00 8

It is well known that nonlinear boundary value problems for fourth-order ordinary
differential equations arise when modeling various problems in mechanics, physics, and
various areas of natural science, see [1, 3, 5] and references therein. Note that there are
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many papers that are devoted to the existence of positive or sign-changing solutions to
such problems addressed by using different methods [1-4, 5-16].

Problems similar to the problem (1.1), (1.2) for ordinary differential equations of sec-
ond order was considered in [6, 7, 10, 11]. In these papers, using the results on the global
bifurcation from zero and infinity of nonlinear Sturm-Liouville problems obtained by Ra-
binowitz [14, 15], Berestycki [4] and Rynne [16], intervals were found such that for each
value of the parameter s from these intervals, the problems under consideration have so-
lutions with fixed usual nodal properties. Note that special cases of the boundary value
problem (1.1), (1.2) were considered in [6, 8, 9, 12, 13], where the values of the parameter
» were found, for which the problems have positive and negative solutions [6, 8, 13] or
have solutions with a certain number of sign change nodes [9, 12].

In the present paper, we will find an interval for s, in which there are solutions to
problem (1.1), (1.2) with a fixed number of oscillations.

The rest of this paper is arranged as follows. In Section 2, we study the behavior of
the nonlinear term g on the neighborhoods of zero and infinity using the conditions from
B2. In Section 3, using global bifurcation results of [1, 2], we determine the interval of s,
in which there exist nodal solutions of nonlinear boundary value problem (1.1), (1.2).

2. Preliminary and some properties of function g

Let BC be the set of functions that satisfy the boundary conditions (1.2), and let
E = C3([0,1];R) N BC be the Banach space with the norm

3

S _ ,
lyll3 ;Iy o, 11yl ;él[%fi]’y(x)’

By the first part of (B2) we have the following representation

9(s) = go + Go(s), (2.1)
where ()
. gols)
\sl|1£>n0 P 0. (2.2)

Lemma 2.1. The following relation holds:

90(W)llee = o([lyll3) as [[yl[z — 0. (2.3)

Proof. Let

= max |go(s)|.
x(y) omax o(s)|

Then x(y) is a nondecreasing function on (0, + co). Moreover, by (2.2) we have the relation

lim M

= 0. 2.4
y—0+ y ( )
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Since y is nondecreasing we get the following inequalities

90w) o xUyD) _ x(lylleo) _ x(llyllz)
llylls = flylls = lylls = lylls

whence, with regards (2.4), implies that

[190(%)loo

— 0 as ||y||z — 0.
lylls

The proof of this lemma is complete.
By the second part of (B2) we have the following representation

9(8) = goo + Joo(s), (2.5)

where ~
lim ()

[s|>+c0 S

= 0. (2.6)
Lemma 2.2. One has t following relation:

1900 (W)loo = o([ly[l3) as |ly[ls — oo (2.7)

Proof. We define the function o(y), y € (0, + c0), as follows:

= ma oo (S)].
o(y) Og‘séy‘goo( )l

Then o(y) is a nondecreasing function on (0, + 0o). Moreover, it follows from (2.6) that

im 7Y (2.8)
y—+oo Yy

Since  is nondecreasing the following relations hold:

gooly) _ oyl _ o(llyllc) o x(llyll3)
lylls = flylls = llylls = llylls

Hence, due to (2.8), we obtain

1190 (1) loo

— 0 as ||y||zs — 0.
[lylls

The proof of this lemma is complete.
Lemma 2.3. There exist a positive constants cy and co, Such that

cogﬁgcooforseR,s#O. (2.9)
s

Proof. Let ¢g > 0 be a sufficiently small fixed number such that

go — €0 > 0 and goo — €9 > 0.
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Then, by (B2), there exist a sufficiently small number by > 0 and a sufficiently large
number dy, > 0 such that

gg—60<gf)<go+eo for |s| < dgy, s #0 (2.10)

and

9(s)

Joo — €0 < — < goo + € for |s| > dwo. (2.11)

f(s)
S
ko and Ko such that

Moreover, since is continuous on [— duo, — do] U [dp, ds)], there are positive constants

ko < & < Koo for dy < |s] < deo. (2.12)
s

Let

co = min {go — €0, Yoo — €0, Ko} and coo = min {go + €0, Goo + €0, Koo }-

Then (2.9) follows directly from (2.10)-(2.12). The proof of this lemma is complete.

3. Main results

We consider the following linear eigenvalue problem

U(y)(z) = At(2)y(z), = € (0,1),
{ Y ?é BC. ’ (3.1)

where A € C is a spectral parameter. By [3, Theorems 5.4, 5.5] the eigenvalues of problem
(3.1) are positive, simple and form an infinitely increasing sequence {A;}7°,. Moreover,
for each k € N the eigenfunction y; corresponding to the eigenvalue \; has exactly & — 1
simple zeros.

To study the global bifurcation of solutions of nonlinear perturbations of problem (3.1),
in [1] the author constructed classes S}, k € N, v € {+, —}, of functions in E that have
the oscillation properties of eigenfunctions (and their derivatives) of the linear problem
(3.1). Note that the sets S,j, S, and Sy = S,j NS, are pairwise disjoint open subsets of
E, and if y € 9S} (0S}), then by [1, Lemma 3.1] y has at least one zero of multiplicity 4
in (0,1).

Alongside the boundary-value problem (1.1), (1.2) we shall consider the following non-
linear eigenvalue problem

U(y)(z) = AoT(x)g(y(x)), = € (0,1),
{ yi BC. ‘ 9 (3.2)

It is obvious that any solution of (3.2) of the form (1,y) yields a solution y of (1.1),
(1.2). Below we will show that for some k£ € N and every v € {+, —} there exists a
solution to problem (1.1), (1.2) of the form (1,y) with y € S}.
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Theorem 3.1. For each k € N and each v € {+, —} there exists a continuum Cio of

solutions of problem (1.1), (1.2), containing ()"“ O) is unbounded in R x E and lies in

090°
v A
(R x S¥)U {(ﬁo)}
Proof. By (2.1) problem (3.2) takes the following form:

{ U(y)(x) = AegoT(z)y(x) + AeT(x)go(y(x)), = € (0,1), (3.3)
y € BC. '

It follows from (2.1) that

1A T Go(¥)lloo = olllyll3) as ly[ls = 0, (3-4)

uniformly in A € A for any bounded interval A C R. Hence problem (3.3) is linearizable
and the corresponding linear problem

(y)() = AogoT(@)y(x), x € (0,1), ,
y € BC. (3.5)
possesses infinitely many eigenvalues A < A2 < ... <A — +00, all of which are simple.

The eigenfunction gy corresponding to i lies in Sj,. Moreover, from (3.5) it can be seen
that A\, = 9)‘7’“0. Then it follows from [1, Theorem 1.1] that for each k& € N and each
v € {+, —} there exists a continuum C} , of solutions of problem (3.3) which contains

(Ak,0), lies in (R x S¥) U{(\x,0)} and is unbounded in R x E. The proof of this theorem
is complete.
By (2.5) problem (3.2) can be rewritten in the following form:

{ U(y)(x) = Ao goo T(2)y(x) + Ao T(2)Joo (y(2)), z € (0,1), (3.6)
y € BC. '

Then, using (2.7) and following the appropriate reasoning in the proof of Theorem 2.1,
from [2, Theorem 3.1] we obtain the following result.
Theorem 3.2. For each k € N and each v there exist a continuum C} _ of solutions

of problem (3.6) (or (3.2)) which contains (g’;—’;, oo) and has the following properties:
(i) there exists a neighborhood Qi of (g;—’;, oo) in R x E such that

A
an(cpaf (25 ) ) crxcst,
’ 0Yco
meets (Qi,oo) through R x SZ,/ for some (K',v') # (k,v), or Ok o
meets (A, 0) for some A € R, or projection of C} ., on R x {0} is unbounded.
Now we can prove the following very important result.

Theorem 3.3. For each k € N and each v one has the relation:

(ii) either CY

k, 00
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Proof. Since g satisfies both conditions B2, by Lemma 3.1 of [1] it follows from [1,

Lemma 1.1] that
b))
Ch s —,00 ] ¢ CR xS} 3.8
t (2 : 55)

e}

(see also [16, Theorem 3.3]). Consequently, the first part of assertion (ii) of Theorem 3.2
cannot hold. Moreover, it follows from [16, Theorem 3.3] that if C}  meets R x {0},

for some A\ € R, then \ = 37’“0. Similarly, if C} ; meets R x {oo}, for some A € R, then
A= Dk

0goo
If the third part of assertion (ii) of this theorem holds, then there exists a sequence
{(Aym)inzy © C;;OO\QJQ such that

A, — £ 00 as n — oo. (3.9)

Since (A5, y5) € R x S} it follows from (3.2) that A} is kth eigenvalue of the linear
problem

£(y)(z) = AoT(x)hny(x), = € (0,1),
{ ) OB (3.10)
where (o)
g(yy (z : *
ha(p)={ w0 F0. (3.11)
90 if y*(z) = 0.

On the base (3.11) from (2.9) we get
0 <o < hp(z) <o, €[0,1]. (3.12)

By (3.12) it follows from [1, relations (4.3) and (4.4)] that the eigenvalues of problems
(3.10) are bounded from below uniformly with respect to n € N, and, consequently, the
relation A\ — — oo is impossible as n — oco. If A} — + 0o, then for any sufficiently large
n € N by (3.12) Theorems 5.4 and 5.5 of [3] implies that the number of zeros of the function
yr (z) will be sufficiently large, which contradicts the condition y;; € Sy. Therefore, the
third part of assertion (ii) of Theorem 3.2 does not hold.

Thus, the second part of assertion (ii) of Theorem 3.2 holds. Consequently, C,’;OO

meets (g)‘—gko,()) and C} ; meets (é;‘]—‘;,oo), which, by (3.8), implies that C,:CO = C’Zoo and
C o= C, o for any k € N. The proof of this theorem is complete.

For simplicity, we introduce the notation:
Ci=Clo=0Cf s Cp =Cpy=Cp s keN.
By Theorem 3.1 and 3.3, for each k € N and each v € {+, —} the continuum C} lies
in (Rx SY)uU {()‘—’“ 0)} U {(A—’“ oo)}, and meets (?—;},0) and < A oo) inRx E. It

090’ 09oo 0900’
follows from here that if

— <l<——o0o — <1< — (3.13)
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for some k € N, then the continua C; and C, intersect the hyperplane {1} x E in R x E.
Consequently, for this k there exist solutions g),:r and g, of problem (1.1), (1.2) such that
QIQ;ES; and 7, € 5 .
It is obvious that the conditions from (3.13) are equivalent to the following conditions
A A A A
—k<g<—kor—k<g<—k, (3.14)
g0 oo Joo go
respectively. Therefore, we have proved the following main theorem of this paper.
Theorem 3.4. Let for some k € N condition (3.14) holds. Then there exist solutions
g),j and g, of problem (1.1), (1.2) such that g),j € S,j and g, € S .
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