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Nodal Solutions of Certain Boundary Value Problem for
Fourth Order Ordinary Differential Equations
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Abstract. In this paper, we consider a nonlinear boundary value problem for fourth order ordinary
differential equations. We show the existence of two different solutions of this problem with a fixed
number of simple zeros.

Key Words and Phrases: nonlinear problem, eigenvalue, eigenfunction, bifurcation point, simple
zero, global continua

2010 Mathematics Subject Classifications: 34B05, 34B15, 34C23, 47H11, 47J10, 47J15

1. Introduction

We consider the following nonlinear boundary value problem

ℓ(y) ≡ (p(x)y′′)′′ − (q(x)y′)′ = ϱ τ(x)g(y(x)), x ∈ (0, l), (1.1)

y′(0) cosα− (py′′)(0) sinα = 0,
y(0) cosβ + Ty(0) sinβ = 0,
y′(l) cos γ + (py′′)(l) sin γ = 0,
y(l) cos δ − Ty(l) sin δ = 0,

(1.2)

Ty ≡ (py′′)′ − qy′, p ∈ C2 ([0, l]; (0,+∞)), q ∈ C1 ([0, l]; [0,+∞)), τ ∈ C ([0, l]; (0,+∞)),
ϱ is a positive parameter, and α, β, γ, δ are real constants such that 0 ≤ α, β, γ, δ ≤ π

2
(the cases α = γ = 0, β = δ = π/2 and α = β = γ = δ = π/2 are excluded ). The
nonlinear term g ∈ C0

(
[0, l]× R5;R

)
and satisfies the following conditions:

(B1) sg(s) > 0 for any s ∈ R, s ̸= 0;
(B2) there exist positive constants g0 and g∞ such that

g0 = lim
|s|→ 0

g(s)

s
, g∞ = lim

|s|→+∞

g(s)

s
.

It is well known that nonlinear boundary value problems for fourth-order ordinary
differential equations arise when modeling various problems in mechanics, physics, and
various areas of natural science, see [1, 3, 5] and references therein. Note that there are
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many papers that are devoted to the existence of positive or sign-changing solutions to
such problems addressed by using different methods [1-4, 5-16].

Problems similar to the problem (1.1), (1.2) for ordinary differential equations of sec-
ond order was considered in [6, 7, 10, 11]. In these papers, using the results on the global
bifurcation from zero and infinity of nonlinear Sturm-Liouville problems obtained by Ra-
binowitz [14, 15], Berestycki [4] and Rynne [16], intervals were found such that for each
value of the parameter κ from these intervals, the problems under consideration have so-
lutions with fixed usual nodal properties. Note that special cases of the boundary value
problem (1.1), (1.2) were considered in [6, 8, 9, 12, 13], where the values of the parameter
κ were found, for which the problems have positive and negative solutions [6, 8, 13] or
have solutions with a certain number of sign change nodes [9, 12].

In the present paper, we will find an interval for κ, in which there are solutions to
problem (1.1), (1.2) with a fixed number of oscillations.

The rest of this paper is arranged as follows. In Section 2, we study the behavior of
the nonlinear term g on the neighborhoods of zero and infinity using the conditions from
B2. In Section 3, using global bifurcation results of [1, 2], we determine the interval of κ,
in which there exist nodal solutions of nonlinear boundary value problem (1.1), (1.2).

2. Preliminary and some properties of function g

Let BC be the set of functions that satisfy the boundary conditions (1.2), and let
E = C3([0, 1];R) ∩BC be the Banach space with the norm

||y||3 =
3∑

s=0

||y(s)||∞, ||y||∞ = max
x∈[ 0,l]

|y(x)|.

By the first part of (B2) we have the following representation

g(s) = g0 + g̃0(s), (2.1)

where

lim
|s|→ 0

g̃0(s)

s
= 0. (2.2)

Lemma 2.1. The following relation holds:

||g̃0(y)||∞ = o(||y||3) as ||y||3 → 0. (2.3)

Proof. Let
χ(y) = max

0≤|s|≤y
|g̃0(s)|.

Then χ(y) is a nondecreasing function on (0,+∞). Moreover, by (2.2) we have the relation

lim
y→0+

χ(y)

y
= 0. (2.4)
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Since χ is nondecreasing we get the following inequalities

g̃0(y)

||y||3
≤ χ(|y|)

||y||3
≤ χ(||y||∞)

||y||3
≤ χ(||y||3)

||y||3
,

whence, with regards (2.4), implies that

||g̃0(y)||∞
||y||3

→ 0 as ||y||3 → 0.

The proof of this lemma is complete.
By the second part of (B2) we have the following representation

g(s) = g∞ + g̃∞(s), (2.5)

where

lim
|s|→+∞

g̃∞(s)

s
= 0. (2.6)

Lemma 2.2. One has t following relation:

||g̃∞(y)||∞ = o(||y||3) as ||y||3 → ∞. (2.7)

Proof. We define the function σ(y), y ∈ (0,+∞), as follows:

σ(y) = max
0≤|s|≤y

|g̃∞(s)|.

Then σ(y) is a nondecreasing function on (0,+∞). Moreover, it follows from (2.6) that

lim
y→+∞

σ(y)

y
= 0. (2.8)

Since χ is nondecreasing the following relations hold:

g̃∞(y)

||y||3
≤ σ(|y|)

||y||3
≤ σ(||y||∞)

||y||3
≤ χ(||y||3)

||y||3
,

Hence, due to (2.8), we obtain

||g̃0(y)||∞
||y||3

→ 0 as ||y||3 → 0.

The proof of this lemma is complete.
Lemma 2.3. There exist a positive constants c0 and c∞ such that

c0 ≤
g(s)

s
≤ c∞ for s ∈ R, s ̸= 0. (2.9)

Proof. Let ϵ0 > 0 be a sufficiently small fixed number such that

g0 − ϵ0 > 0 and g∞ − ϵ0 > 0.
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Then, by (B2), there exist a sufficiently small number b0 > 0 and a sufficiently large
number d∞ > 0 such that

g0 − ϵ0 <
g(s)

s
< g0 + ϵ0 for |s| < d0, s ̸= 0 (2.10)

and

g∞ − ϵ0 <
g(s)

s
< g∞ + ϵ0 for |s| > d∞. (2.11)

Moreover, since f(s)
s is continuous on [− d∞,− d0] ∪ [d0, d∞], there are positive constants

κ0 and κ∞ such that

κ0 ≤
f(s)

s
≤ κ∞ for d0 ≤ |s| ≤ d∞. (2.12)

Let

c0 = min {g0 − ϵ0, g∞ − ϵ0, κ0} and c∞ = min {g0 + ϵ0, g∞ + ϵ0, κ∞}.

Then (2.9) follows directly from (2.10)-(2.12). The proof of this lemma is complete.

3. Main results

We consider the following linear eigenvalue problem{
ℓ(y)(x) = λτ(x)y(x), x ∈ (0, l),
y ∈ BC.

(3.1)

where λ ∈ C is a spectral parameter. By [3, Theorems 5.4, 5.5] the eigenvalues of problem
(3.1) are positive, simple and form an infinitely increasing sequence {λk}∞k=1. Moreover,
for each k ∈ N the eigenfunction yk corresponding to the eigenvalue λk has exactly k − 1
simple zeros.

To study the global bifurcation of solutions of nonlinear perturbations of problem (3.1),
in [1] the author constructed classes Sν

k , k ∈ N, ν ∈ {+ , −}, of functions in E that have
the oscillation properties of eigenfunctions (and their derivatives) of the linear problem
(3.1). Note that the sets S+

k , S
−
k and Sk = S+

k ∩ S−
k are pairwise disjoint open subsets of

E, and if y ∈ ∂Sν
k (∂Sk), then by [1, Lemma 3.1] y has at least one zero of multiplicity 4

in (0, l).
Alongside the boundary-value problem (1.1), (1.2) we shall consider the following non-

linear eigenvalue problem{
ℓ(y)(x) = λϱ τ(x)g(y(x)), x ∈ (0, l),
y ∈ BC.

(3.2)

It is obvious that any solution of (3.2) of the form (1, y) yields a solution y of (1.1),
(1.2). Below we will show that for some k ∈ N and every ν ∈ {+ , −} there exists a
solution to problem (1.1), (1.2) of the form (1, y) with y ∈ Sν

k .
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Theorem 3.1. For each k ∈ N and each ν ∈ {+ , −} there exists a continuum Cν
k, 0 of

solutions of problem (1.1), (1.2), containing
(

λk
ϱg0

, 0
)
is unbounded in R × E and lies in

(R× Sν
k ) ∪

{(
λk
ϱg0

, 0
)}

.

Proof. By (2.1) problem (3.2) takes the following form:{
ℓ(y)(x) = λϱ g0 τ(x)y(x) + λϱ τ(x)g̃0(y(x)), x ∈ (0, l),
y ∈ BC.

(3.3)

It follows from (2.1) that

||λϱ τ g̃0(y)||∞ = o(||y||3) as ||y||3 → 0, (3.4)

uniformly in λ ∈ Λ for any bounded interval Λ ⊂ R. Hence problem (3.3) is linearizable
and the corresponding linear problem{

ℓ(y)(x) = λϱ g0 τ(x)y(x), x ∈ (0, l),
y ∈ BC.

(3.5)

possesses infinitely many eigenvalues λ̃1 < λ̃2 < . . . < λ̃k → +∞, all of which are simple.
The eigenfunction ỹk corresponding to λ̃k lies in Sk. Moreover, from (3.5) it can be seen
that λ̃k = λk

ϱg0
. Then it follows from [1, Theorem 1.1] that for each k ∈ N and each

ν ∈ {+ , −} there exists a continuum Cν
k, 0 of solutions of problem (3.3) which contains

(λ̃k, 0), lies in (R× Sν
k )∪ {(λ̃k, 0)} and is unbounded in R×E. The proof of this theorem

is complete.
By (2.5) problem (3.2) can be rewritten in the following form:{

ℓ(y)(x) = λϱ g∞ τ(x)y(x) + λϱ τ(x)g̃∞(y(x)), x ∈ (0, l),
y ∈ BC.

(3.6)

Then, using (2.7) and following the appropriate reasoning in the proof of Theorem 2.1,
from [2, Theorem 3.1] we obtain the following result.

Theorem 3.2. For each k ∈ N and each ν there exist a continuum Cν
k,∞ of solutions

of problem (3.6) (or (3.2)) which contains
(

λk
ϱg∞

,∞
)
and has the following properties:

(i) there exists a neighborhood Qk of
(

λk
ϱg∞

,∞
)
in R× E such that

Qk ∩
(
Cν
k,∞\

{(
λk

ϱg∞
,∞

)})
⊂ R× Sν

k ;

(ii) either Cν
k,∞ meets

(
λ′
k

ϱg∞
,∞

)
through R × Sν′

k′ for some (k′, ν ′) ̸= (k, ν), or Cν
k,∞

meets (λ, 0) for some λ ∈ R, or projection of Cν
k,∞ on R× {0} is unbounded.

Now we can prove the following very important result.
Theorem 3.3. For each k ∈ N and each ν one has the relation:

Cν
k, 0 = Cν

k,∞. (3.7)
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Proof. Since g satisfies both conditions B2, by Lemma 3.1 of [1] it follows from [1,
Lemma 1.1] that

Cν
k,∞\

{(
λk

ϱg∞
,∞

)}
⊂ R× Sν

k (3.8)

(see also [16, Theorem 3.3]). Consequently, the first part of assertion (ii) of Theorem 3.2
cannot hold. Moreover, it follows from [16, Theorem 3.3] that if Cν

k,∞ meets R × {0},
for some λ ∈ R, then λ = λk

ϱg0
. Similarly, if Cν

k, 0 meets R × {∞}, for some λ ∈ R, then
λ = λk

ϱg∞
.

If the third part of assertion (ii) of this theorem holds, then there exists a sequence
{(λ∗

n, y
∗
n)}∞n=1 ⊂ Cν

k,∞\Qk such that

λ∗
n → ±∞ as n → ∞. (3.9)

Since (λ∗
n, y

∗
n) ∈ R × Sν

k it follows from (3.2) that λ∗
n is kth eigenvalue of the linear

problem {
ℓ(y)(x) = λϱ τ(x)hny(x), x ∈ (0, l),
y ∈ BC,

(3.10)

where

hn(x) =

{
g(y∗n(x))
y∗n(x)

if y∗n(x) ̸= 0,

g0 if y∗n(x) = 0.
(3.11)

On the base (3.11) from (2.9) we get

0 < c0 ≤ hn(x) ≤ c∞, x ∈ [0, l]. (3.12)

By (3.12) it follows from [1, relations (4.3) and (4.4)] that the eigenvalues of problems
(3.10) are bounded from below uniformly with respect to n ∈ N, and, consequently, the
relation λ∗

n → −∞ is impossible as n → ∞. If λ∗
n → +∞, then for any sufficiently large

n ∈ N by (3.12) Theorems 5.4 and 5.5 of [3] implies that the number of zeros of the function
y∗n(x) will be sufficiently large, which contradicts the condition y∗n ∈ Sν

k . Therefore, the
third part of assertion (ii) of Theorem 3.2 does not hold.

Thus, the second part of assertion (ii) of Theorem 3.2 holds. Consequently, Cν
k,∞

meets ( λk
ϱg0

, 0) and Cν
k, 0 meets ( λk

ϱg∞
,∞), which, by (3.8), implies that C+

k, 0 = C+
k,∞ and

C−
k, 0 = C−

k,∞ for any k ∈ N. The proof of this theorem is complete.
For simplicity, we introduce the notation:

C+
k = C+

k, 0 = C+
k,∞, C−

k = C−
k, 0 = C−

k,∞, k ∈ N.

By Theorem 3.1 and 3.3, for each k ∈ N and each ν ∈ {+ , −} the continuum Cν
k lies

in (R× Sν
k ) ∪

{(
λk
ϱg0

, 0
)}

∪
{(

λk
ϱg∞

,∞
)}

, and meets
(

λk
ϱg0

, 0
)
and

(
λk
ϱg∞

,∞
)
in R×E. It

follows from here that if

λk

ϱg0
< 1 <

λk

ϱg∞
or

λk

ϱg∞
< 1 <

λk

ϱg0
(3.13)



Nodal Solutions of Certain Boundary Value Problem... 9

for some k ∈ N, then the continua C+
k and C−

k intersect the hyperplane {1}×E in R×E.
Consequently, for this k there exist solutions ŷ+k and ŷ−k of problem (1.1), (1.2) such that
ŷ+k ∈ S+

k and ŷ−k ∈ S−
k .

It is obvious that the conditions from (3.13) are equivalent to the following conditions

λk

g0
< ϱ <

λk

g∞
or

λk

g∞
< ϱ <

λk

g0
, (3.14)

respectively. Therefore, we have proved the following main theorem of this paper.
Theorem 3.4. Let for some k ∈ N condition (3.14) holds. Then there exist solutions

ŷ+k and ŷ−k of problem (1.1), (1.2) such that ŷ+k ∈ S+
k and ŷ−k ∈ S−

k .
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