Nodal Solutions of Certain Boundary Value Problem for Fourth Order Ordinary Differential Equations

N.A. Neymatov, R.G. Poladov

Abstract

In this paper, we consider a nonlinear boundary value problem for fourth order ordinary differential equations. We show the existence of two different solutions of this problem with a fixed number of simple zeros.

Key Words and Phrases: nonlinear problem, eigenvalue, eigenfunction, bifurcation point, simple zero, global continua
2010 Mathematics Subject Classifications: 34B05, 34B15, 34C23, 47H11, 47J10, 47J15

1. Introduction

We consider the following nonlinear boundary value problem

$$
\begin{gather*}
\ell(y) \equiv\left(p(x) y^{\prime \prime}\right)^{\prime \prime}-\left(q(x) y^{\prime}\right)^{\prime}=\varrho \tau(x) g(y(x)), x \in(0, l), \tag{1.1}\\
y^{\prime}(0) \cos \alpha-\left(p y^{\prime \prime}\right)(0) \sin \alpha=0, \\
y(0) \cos \beta+T y(0) \sin \beta=0, \\
y^{\prime}(l) \cos \gamma+\left(p y^{\prime \prime}\right)(l) \sin \gamma=0, \tag{1.2}\\
y(l) \cos \delta-T y(l) \sin \delta=0,
\end{gather*}
$$

$T y \equiv\left(p y^{\prime \prime}\right)^{\prime}-q y^{\prime}, p \in C^{2}([0, l] ;(0,+\infty)), q \in C^{1}([0, l] ;[0,+\infty)), \tau \in C([0, l] ;(0,+\infty))$, ϱ is a positive parameter, and $\alpha, \beta, \gamma, \delta$ are real constants such that $0 \leq \alpha, \beta, \gamma, \delta \leq \frac{\pi}{2}$ (the cases $\alpha=\gamma=0, \beta=\delta=\pi / 2$ and $\alpha=\beta=\gamma=\delta=\pi / 2$ are excluded). The nonlinear term $g \in C^{0}\left([0, l] \times \mathbb{R}^{5} ; \mathbb{R}\right)$ and satisfies the following conditions:
(B1) $s g(s)>0$ for any $s \in \mathbb{R}, s \neq 0$;
(B2) there exist positive constants g_{0} and g_{∞} such that

$$
g_{0}=\lim _{|s| \rightarrow 0} \frac{g(s)}{s}, g_{\infty}=\lim _{|s| \rightarrow+\infty} \frac{g(s)}{s} .
$$

It is well known that nonlinear boundary value problems for fourth-order ordinary differential equations arise when modeling various problems in mechanics, physics, and various areas of natural science, see $[1,3,5]$ and references therein. Note that there are
many papers that are devoted to the existence of positive or sign-changing solutions to such problems addressed by using different methods [1-4, 5-16].

Problems similar to the problem (1.1), (1.2) for ordinary differential equations of second order was considered in $[6,7,10,11]$. In these papers, using the results on the global bifurcation from zero and infinity of nonlinear Sturm-Liouville problems obtained by Rabinowitz [14, 15], Berestycki [4] and Rynne [16], intervals were found such that for each value of the parameter \varkappa from these intervals, the problems under consideration have solutions with fixed usual nodal properties. Note that special cases of the boundary value problem (1.1), (1.2) were considered in $[6,8,9,12,13]$, where the values of the parameter \varkappa were found, for which the problems have positive and negative solutions $[6,8,13]$ or have solutions with a certain number of sign change nodes $[9,12]$.

In the present paper, we will find an interval for \varkappa, in which there are solutions to problem (1.1), (1.2) with a fixed number of oscillations.

The rest of this paper is arranged as follows. In Section 2, we study the behavior of the nonlinear term g on the neighborhoods of zero and infinity using the conditions from B2. In Section 3, using global bifurcation results of [1, 2], we determine the interval of \varkappa, in which there exist nodal solutions of nonlinear boundary value problem (1.1), (1.2).

2. Preliminary and some properties of function g

Let $B C$ be the set of functions that satisfy the boundary conditions (1.2), and let $E=C^{3}([0,1] ; \mathbb{R}) \cap B C$ be the Banach space with the norm

$$
\|y\|_{3}=\sum_{s=0}^{3}\left\|y^{(s)}\right\|_{\infty},\|y\|_{\infty}=\max _{x \in[0, l]}|y(x)| .
$$

By the first part of (B2) we have the following representation

$$
\begin{equation*}
g(s)=g_{0}+\tilde{g}_{0}(s), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{|s| \rightarrow 0} \frac{\tilde{g}_{0}(s)}{s}=0 . \tag{2.2}
\end{equation*}
$$

Lemma 2.1. The following relation holds:

$$
\begin{equation*}
\left\|\tilde{g}_{0}(y)\right\|_{\infty}=o\left(\|y\|_{3}\right) \text { as }\|y\|_{3} \rightarrow 0 . \tag{2.3}
\end{equation*}
$$

Proof. Let

$$
\chi(y)=\max _{0 \leq|s| \leq y}\left|\tilde{g}_{0}(s)\right| .
$$

Then $\chi(y)$ is a nondecreasing function on $(0,+\infty)$. Moreover, by (2.2) we have the relation

$$
\begin{equation*}
\lim _{y \rightarrow 0+} \frac{\chi(y)}{y}=0 . \tag{2.4}
\end{equation*}
$$

Since χ is nondecreasing we get the following inequalities

$$
\frac{\tilde{g}_{0}(y)}{\|y\|_{3}} \leq \frac{\chi(|y|)}{\|y\|_{3}} \leq \frac{\chi\left(\|y\|_{\infty}\right)}{\|y\|_{3}} \leq \frac{\chi\left(\|y\|_{3}\right)}{\|y\|_{3}},
$$

whence, with regards (2.4), implies that

$$
\frac{\left\|\tilde{g}_{0}(y)\right\|_{\infty}}{\|y\|_{3}} \rightarrow 0 \text { as }\|y\|_{3} \rightarrow 0
$$

The proof of this lemma is complete.
By the second part of (B2) we have the following representation

$$
\begin{equation*}
g(s)=g_{\infty}+\tilde{g}_{\infty}(s) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{|s| \rightarrow+\infty} \frac{\tilde{g}_{\infty}(s)}{s}=0 \tag{2.6}
\end{equation*}
$$

Lemma 2.2. One has t following relation:

$$
\begin{equation*}
\left\|\tilde{g}_{\infty}(y)\right\|_{\infty}=o\left(\|y\|_{3}\right) \text { as }\|y\|_{3} \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Proof. We define the function $\sigma(y), y \in(0,+\infty)$, as follows:

$$
\sigma(y)=\max _{0 \leq|s| \leq y}\left|\tilde{g}_{\infty}(s)\right|
$$

Then $\sigma(y)$ is a nondecreasing function on $(0,+\infty)$. Moreover, it follows from (2.6) that

$$
\begin{equation*}
\lim _{y \rightarrow+\infty} \frac{\sigma(y)}{y}=0 \tag{2.8}
\end{equation*}
$$

Since χ is nondecreasing the following relations hold:

$$
\frac{\tilde{g}_{\infty}(y)}{\|y\|_{3}} \leq \frac{\sigma(|y|)}{\|y\|_{3}} \leq \frac{\sigma\left(\|y\|_{\infty}\right)}{\|y\|_{3}} \leq \frac{\chi\left(\|y\|_{3}\right)}{\|y\|_{3}}
$$

Hence, due to (2.8), we obtain

$$
\frac{\left\|\tilde{g}_{0}(y)\right\|_{\infty}}{\|y\|_{3}} \rightarrow 0 \text { as }\|y\|_{3} \rightarrow 0
$$

The proof of this lemma is complete.
Lemma 2.3. There exist a positive constants c_{0} and c_{∞} such that

$$
\begin{equation*}
c_{0} \leq \frac{g(s)}{s} \leq c_{\infty} \text { for } s \in \mathbb{R}, s \neq 0 \tag{2.9}
\end{equation*}
$$

Proof. Let $\epsilon_{0}>0$ be a sufficiently small fixed number such that

$$
g_{0}-\epsilon_{0}>0 \text { and } g_{\infty}-\epsilon_{0}>0
$$

Then, by (B2), there exist a sufficiently small number $b_{0}>0$ and a sufficiently large number $d_{\infty}>0$ such that

$$
\begin{equation*}
g_{0}-\epsilon_{0}<\frac{g(s)}{s}<g_{0}+\epsilon_{0} \text { for }|s|<d_{0}, s \neq 0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\infty}-\epsilon_{0}<\frac{g(s)}{s}<g_{\infty}+\epsilon_{0} \text { for }|s|>d_{\infty} \tag{2.11}
\end{equation*}
$$

Moreover, since $\frac{f(s)}{s}$ is continuous on $\left[-d_{\infty},-d_{0}\right] \cup\left[d_{0}, d_{\infty}\right]$, there are positive constants κ_{0} and κ_{∞} such that

$$
\begin{equation*}
\kappa_{0} \leq \frac{f(s)}{s} \leq \kappa_{\infty} \text { for } d_{0} \leq|s| \leq d_{\infty} \tag{2.12}
\end{equation*}
$$

Let

$$
c_{0}=\min \left\{g_{0}-\epsilon_{0}, g_{\infty}-\epsilon_{0}, \kappa_{0}\right\} \text { and } c_{\infty}=\min \left\{g_{0}+\epsilon_{0}, g_{\infty}+\epsilon_{0}, \kappa_{\infty}\right\} .
$$

Then (2.9) follows directly from (2.10)-(2.12). The proof of this lemma is complete.

3. Main results

We consider the following linear eigenvalue problem

$$
\left\{\begin{array}{l}
\ell(y)(x)=\lambda \tau(x) y(x), x \in(0, l), \tag{3.1}\\
y \in B C .
\end{array}\right.
$$

where $\lambda \in \mathbb{C}$ is a spectral parameter. By [3, Theorems 5.4, 5.5] the eigenvalues of problem (3.1) are positive, simple and form an infinitely increasing sequence $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$. Moreover, for each $k \in \mathbb{N}$ the eigenfunction y_{k} corresponding to the eigenvalue λ_{k} has exactly $k-1$ simple zeros.

To study the global bifurcation of solutions of nonlinear perturbations of problem (3.1), in [1] the author constructed classes $S_{k}^{\nu}, k \in \mathbb{N}, \nu \in\{+,-\}$, of functions in E that have the oscillation properties of eigenfunctions (and their derivatives) of the linear problem (3.1). Note that the sets S_{k}^{+}, S_{k}^{-}and $S_{k}=S_{k}^{+} \cap S_{k}^{-}$are pairwise disjoint open subsets of E, and if $y \in \partial S_{k}^{\nu}\left(\partial S_{k}\right)$, then by [1, Lemma 3.1] y has at least one zero of multiplicity 4 in $(0, l)$.

Alongside the boundary-value problem (1.1), (1.2) we shall consider the following nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
\ell(y)(x)=\lambda \varrho \tau(x) g(y(x)), x \in(0, l), \tag{3.2}\\
y \in B C .
\end{array}\right.
$$

It is obvious that any solution of (3.2) of the form $(1, y)$ yields a solution y of (1.1), (1.2). Below we will show that for some $k \in \mathbb{N}$ and every $\nu \in\{+,-\}$ there exists a solution to problem (1.1), (1.2) of the form $(1, y)$ with $y \in S_{k}^{\nu}$.

Theorem 3.1. For each $k \in \mathbb{N}$ and each $\nu \in\{+,-\}$ there exists a continuum $C_{k, 0}^{\nu}$ of solutions of problem (1.1), (1.2), containing $\left(\frac{\lambda_{k}}{\varrho g_{0}}, 0\right)$ is unbounded in $\mathbb{R} \times E$ and lies in $\left(\mathbb{R} \times S_{k}^{\nu}\right) \cup\left\{\left(\frac{\lambda_{k}}{\varrho g_{0}}, 0\right)\right\}$.

Proof. By (2.1) problem (3.2) takes the following form:

$$
\left\{\begin{array}{l}
\ell(y)(x)=\lambda \varrho g_{0} \tau(x) y(x)+\lambda \varrho \tau(x) \tilde{g}_{0}(y(x)), x \in(0, l), \tag{3.3}\\
y \in B C .
\end{array}\right.
$$

It follows from (2.1) that

$$
\begin{equation*}
\left\|\lambda \varrho \tau \tilde{g}_{0}(y)\right\|_{\infty}=o\left(\|y\|_{3}\right) \text { as }\|y\|_{3} \rightarrow 0, \tag{3.4}
\end{equation*}
$$

uniformly in $\lambda \in \Lambda$ for any bounded interval $\Lambda \subset \mathbb{R}$. Hence problem (3.3) is linearizable and the corresponding linear problem

$$
\left\{\begin{array}{l}
\ell(y)(x)=\lambda \varrho g_{0} \tau(x) y(x), x \in(0, l), \tag{3.5}\\
y \in B C .
\end{array}\right.
$$

possesses infinitely many eigenvalues $\tilde{\lambda}_{1}<\tilde{\lambda}_{2}<\ldots<\tilde{\lambda}_{k} \rightarrow+\infty$, all of which are simple. The eigenfunction \tilde{y}_{k} corresponding to $\tilde{\lambda}_{k}$ lies in S_{k}. Moreover, from (3.5) it can be seen that $\tilde{\lambda}_{k}=\frac{\lambda_{k}}{\varrho g_{0}}$. Then it follows from [1, Theorem 1.1] that for each $k \in \mathbb{N}$ and each $\nu \in\{+,-\}$ there exists a continuum $C_{k, 0}^{\nu}$ of solutions of problem (3.3) which contains $\left(\tilde{\lambda}_{k}, 0\right)$, lies in $\left(\mathbb{R} \times S_{k}^{\nu}\right) \cup\left\{\left(\tilde{\lambda}_{k}, 0\right)\right\}$ and is unbounded in $\mathbb{R} \times E$. The proof of this theorem is complete.

By (2.5) problem (3.2) can be rewritten in the following form:

$$
\left\{\begin{array}{l}
\ell(y)(x)=\lambda \varrho g_{\infty} \tau(x) y(x)+\lambda \varrho \tau(x) \tilde{g}_{\infty}(y(x)), x \in(0, l), \tag{3.6}\\
y \in B C .
\end{array}\right.
$$

Then, using (2.7) and following the appropriate reasoning in the proof of Theorem 2.1, from [2, Theorem 3.1] we obtain the following result.

Theorem 3.2. For each $k \in \mathbb{N}$ and each ν there exist a continuum $C_{k, \infty}^{\nu}$ of solutions of problem (3.6) (or (3.2)) which contains $\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)$ and has the following properties:
(i) there exists a neighborhood Q_{k} of $\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)$ in $\mathbb{R} \times E$ such that

$$
Q_{k} \cap\left(C_{k, \infty}^{\nu} \backslash\left\{\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)\right\}\right) \subset \mathbb{R} \times S_{k}^{\nu}
$$

(ii) either $C_{k, \infty}^{\nu}$ meets $\left(\frac{\lambda_{k}^{\prime}}{\varrho g_{\infty}}, \infty\right)$ through $\mathbb{R} \times S_{k^{\prime}}^{\nu^{\prime}}$ for some $\left(k^{\prime}, \nu^{\prime}\right) \neq(k, \nu)$, or $C_{k, \infty}^{\nu}$ meets $(\lambda, 0)$ for some $\lambda \in \mathbb{R}$, or projection of $C_{k, \infty}^{\nu}$ on $\mathbb{R} \times\{0\}$ is unbounded.

Now we can prove the following very important result.
Theorem 3.3. For each $k \in \mathbb{N}$ and each ν one has the relation:

$$
\begin{equation*}
C_{k, 0}^{\nu}=C_{k, \infty}^{\nu} . \tag{3.7}
\end{equation*}
$$

Proof. Since g satisfies both conditions B2, by Lemma 3.1 of [1] it follows from [1, Lemma 1.1] that

$$
\begin{equation*}
C_{k, \infty}^{\nu} \backslash\left\{\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)\right\} \subset \mathbb{R} \times S_{k}^{\nu} \tag{3.8}
\end{equation*}
$$

(see also [16, Theorem 3.3]). Consequently, the first part of assertion (ii) of Theorem 3.2 cannot hold. Moreover, it follows from [16, Theorem 3.3] that if $C_{k, \infty}^{\nu}$ meets $\mathbb{R} \times\{0\}$, for some $\lambda \in \mathbb{R}$, then $\lambda=\frac{\lambda_{k}}{\varrho g_{0}}$. Similarly, if $C_{k, 0}^{\nu}$ meets $\mathbb{R} \times\{\infty\}$, for some $\lambda \in \mathbb{R}$, then $\lambda=\frac{\lambda_{k}}{\varrho g_{\infty}}$.

If the third part of assertion (ii) of this theorem holds, then there exists a sequence $\left\{\left(\lambda_{n}^{*}, y_{n}^{*}\right)\right\}_{n=1}^{\infty} \subset C_{k, \infty}^{\nu} \backslash Q_{k}$ such that

$$
\begin{equation*}
\lambda_{n}^{*} \rightarrow \pm \infty \text { as } n \rightarrow \infty \tag{3.9}
\end{equation*}
$$

Since $\left(\lambda_{n}^{*}, y_{n}^{*}\right) \in \mathbb{R} \times S_{k}^{\nu}$ it follows from (3.2) that λ_{n}^{*} is k th eigenvalue of the linear problem

$$
\left\{\begin{array}{l}
\ell(y)(x)=\lambda \varrho \tau(x) h_{n} y(x), x \in(0, l) \tag{3.10}\\
y \in B C
\end{array}\right.
$$

where

$$
h_{n}(x)=\left\{\begin{array}{cc}
\frac{g\left(y_{n}^{*}(x)\right)}{y_{n}^{*}(x)} & \text { if } y_{n}^{*}(x) \neq 0 \tag{3.11}\\
g_{0} & \text { if } y_{n}^{*}(x)=0 .
\end{array}\right.
$$

On the base (3.11) from (2.9) we get

$$
\begin{equation*}
0<c_{0} \leq h_{n}(x) \leq c_{\infty}, x \in[0, l] \tag{3.12}
\end{equation*}
$$

By (3.12) it follows from [1, relations (4.3) and (4.4)] that the eigenvalues of problems (3.10) are bounded from below uniformly with respect to $n \in \mathbb{N}$, and, consequently, the relation $\lambda_{n}^{*} \rightarrow-\infty$ is impossible as $n \rightarrow \infty$. If $\lambda_{n}^{*} \rightarrow+\infty$, then for any sufficiently large $n \in \mathbb{N}$ by (3.12) Theorems 5.4 and 5.5 of [3] implies that the number of zeros of the function $y_{n}^{*}(x)$ will be sufficiently large, which contradicts the condition $y_{n}^{*} \in S_{k}^{\nu}$. Therefore, the third part of assertion (ii) of Theorem 3.2 does not hold.

Thus, the second part of assertion (ii) of Theorem 3.2 holds. Consequently, $C_{k, \infty}^{\nu}$ meets $\left(\frac{\lambda_{k}}{\varrho g_{0}}, 0\right)$ and $C_{k, 0}^{\nu}$ meets $\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)$, which, by (3.8), implies that $C_{k, 0}^{+}=C_{k, \infty}^{+}$and $C_{k, 0}^{-}=C_{k, \infty}^{-}$for any $k \in \mathbb{N}$. The proof of this theorem is complete.

For simplicity, we introduce the notation:

$$
C_{k}^{+}=C_{k, 0}^{+}=C_{k, \infty}^{+}, C_{k}^{-}=C_{k, 0}^{-}=C_{k, \infty}^{-}, k \in \mathbb{N}
$$

By Theorem 3.1 and 3.3, for each $k \in \mathbb{N}$ and each $\nu \in\{+,-\}$ the continuum C_{k}^{ν} lies in $\left(\mathbb{R} \times S_{k}^{\nu}\right) \cup\left\{\left(\frac{\lambda_{k}}{\varrho g_{0}}, 0\right)\right\} \cup\left\{\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)\right\}$, and meets $\left(\frac{\lambda_{k}}{\varrho g_{0}}, 0\right)$ and $\left(\frac{\lambda_{k}}{\varrho g_{\infty}}, \infty\right)$ in $\mathbb{R} \times E$. It follows from here that if

$$
\begin{equation*}
\frac{\lambda_{k}}{\varrho g_{0}}<1<\frac{\lambda_{k}}{\varrho g_{\infty}} \text { or } \frac{\lambda_{k}}{\varrho g_{\infty}}<1<\frac{\lambda_{k}}{\varrho g_{0}} \tag{3.13}
\end{equation*}
$$

for some $k \in \mathbb{N}$, then the continua C_{k}^{+}and C_{k}^{-}intersect the hyperplane $\{1\} \times E$ in $\mathbb{R} \times E$. Consequently, for this k there exist solutions \hat{y}_{k}^{+}and \hat{y}_{k}^{-}of problem (1.1), (1.2) such that $\hat{y}_{k}^{+} \in S_{k}^{+}$and $\hat{y}_{k}^{-} \in S_{k}^{-}$.

It is obvious that the conditions from (3.13) are equivalent to the following conditions

$$
\begin{equation*}
\frac{\lambda_{k}}{g_{0}}<\varrho<\frac{\lambda_{k}}{g_{\infty}} \text { or } \frac{\lambda_{k}}{g_{\infty}}<\varrho<\frac{\lambda_{k}}{g_{0}} \tag{3.14}
\end{equation*}
$$

respectively. Therefore, we have proved the following main theorem of this paper.
Theorem 3.4. Let for some $k \in \mathbb{N}$ condition (3.14) holds. Then there exist solutions \hat{y}_{k}^{+}and \hat{y}_{k}^{-}of problem (1.1), (1.2) such that $\hat{y}_{k}^{+} \in S_{k}^{+}$and $\hat{y}_{k}^{-} \in S_{k}^{-}$.

References

[1] Z.S. Aliyev, Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order, Sb. Math. 207(12) (2016), 1625-1649.
[2] Z.S. Aliyev, N.A. Mustafayeva, Bifurcation of solutions from infinity for certain nonlinear eigenvalue problems of fourth-order ordinary differential equations, Electron. J. Differ. Equ. 2018 (2018), No. 98, 1-19.
[3] D.O. Banks, G. J. Kurowski, A Prüfer transformation for the equation of a vibrating beam subject to axial forces, J. Differential Equations 24(1) (1977), 57-74.
[4] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations 26(3) (1977), 375-390.
[5] B.B. Bolotin, Vibrations in technique: Handbook in 6 volumes, The vibrations of linear systems. I, Engineering Industry, Moscow (1978) [in Russian].
[6] G. Dai, X.Han, Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight, Appl. Math. Comp. 219 (2013), 9399-9407.
[7] G. Dai, R. Ma, Bifurcation from intervals for Sturm-Liouville problems and its applications, Electron. J. Differ. Equ. 2014(3) (2014), 1-10.
[8] J.R.L. Webb, G. Infante, D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 138(2) (2008), 427-446.
[9] A.C. Lazer, P.J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl. 181(3) (1994), 648-655.
[10] R. Ma and G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville problem with a nonsmooth nonlinearity, J. Funct. Anal. 265 (2013), 1443-1459.
[11] R. Ma, B. Thompson, A note on bifurcation from an interval, Nonlinear Anal. 62(4) (2005), 743-749.
[12] R. Ma, B. Thompson, Nodal solutions for a nonlinear fourth-order eigenvalue problem, Acta Math. Sin. (Engl. Ser.) 24(1) (2008), 27-34
[13] R. Ma, Jia Xu, Bifurcation from interval and positive solutions of a nonlinear fourthorder boundary value problem, Nonlinear Anal. 72(1) (2010), 113-122.
[14] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7(3) (1971), 487-513.
[15] P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14(3) (1973), 462-475.
[16] B.P. Rynne, Bifurcation from zero or infinity in Sturm-Liouville problems which are not linearizable, J. Math. Anal. Appl. 228(1) (1998), 141-156.

Nazim A. Neymatov
Ganja State University, Ganja, Azerbaijan
E-mail: nneymatov@yandex.ru
Rovshan G. Poladov
Baku State University, Baku, Azerbaijan
E-mail: r_poladov@mail.ru

Received 27 August 2022
Accepted 29 September 2022

