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lem
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Abstract. In this paper is studied the spectral problem for a discontinuous second order differ-
ential operator with a spectral parameter in conjugation conditions, that arises by solving the
problem on vibrations of a loaded string with the free ends. Asymptotic formulas for the eigen-
values and eigenfunctions of the spectral problem are obtained, a theorem on the completeness
and minimality of system of eigenvectors of the linearize operator in spaces Lp ⊕ C is proved, as
well as a theorem on the completeness and minimality in Lp of the system of eigenfunctions of the
spectral problem after excluding an arbitrary eigenfunction from it.
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1. Introduction

Consider a spectral problem

y′′(x) + λy(x) = 0 , x ∈
(
0,

1

3

)⋃ (
1

3
, 1

)
, (1)

y′(0) =y′(1) = 0,
y(13 − 0) =y(13 + 0),
y′(13 − 0)− y′(13 + 0) =λmy(13),

 (2)

which arises by solving the problem on vibrations of a loaded string with the free ends
[1-3]. The spectral problem corresponding to the problem of oscillation of a loaded string
with intersected ends was studied in [4;5] in the case when the load is fixed in the middle

of the string, and in [6-8] in the case when the load is fixed at the point x =
1

3
. Similar

questions for spectral problems corresponding to the case when the load is fixed at one or
both ends of the string, were studied by other methods in[9-12].
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2. The asymptotic of eigenvalues and eigenfunctions

Let λ=ρ2 and introduce the following notation for boundary forms (2).

Uν(y) =Uν1(y) + Uν2(y),ν=1, 4, (3)

where

U11(y) =y′(0),U12(y) ≡ 0,

U21(y) ≡ 0, U22(y) =y′(1),

U31(y) =y(
1

3
− 0),U32(y) =− y(

1

3
+ 0),

U41(y) =y′(
1

3
− 0),U42(y) =− y′(

1

3
+ 0)− ρ2my(

1

3
+ 0).

Firstly, let us prove the following theorem.

Theorem 1. Spectral problem (1), (2) has two series of simple eigenvalues: λ1,n =
(ρ1,n)

2 , n = 1, 2, ...,è λ2,n = (ρ2,n)
2 , n = 0, 1, 2, ..., where

ρ1,n= 3πn+3π
2 +O( 1n)

ρ2,n=
3πn
2 + 3π

2 +O( 1n).

}
(4)

The eigenfunctions u(x), n=0,1,2,..., prescribed by formula

ui,n (x) =

{
cos

2ρi,n
3 cosρi,n x, x ∈

[
0, 13

]
,

cos
ρi,n
3 cosρi,n (1− x) , x ∈

[
1
3 , 1

]
,

i = 1, 2;n ∈ Z+ (5)

correspond to them.

Proof. Take y11(x) = sinρx, y12(x) = cosρx for x ∈
[
0, 13

]
and y21(x) = sinρ(x −

1
3),y22(x) = cosρ(x− 1

3) for x ∈
[
1
3 , 1

]
as linear - independent solutions of the equation (1).

Eigenfunctions of the problem (1), (2) will be sought in the form

y(x, ρ) =

{
c11y11(x) + c12y12(x),x ∈

[
0, 13

]
,

c21y21(x) + c22y22(x),x ∈
[
1
3 , 1

]
,

=

=

{
c11sinρx+ c12cosρx, x ∈

[
0, 13

]
,

c21sinρ(x− 1
3) + c22cosρ(x− 1

3),x ∈
[
1
3 , 1

]
.

(6)

Let us require that the function y(x, ρ) satisfies the boundary conditions (2) . Then for
definition of numbers cj.k we obtain the system of the linear homogeneous equations{

C11Uν1(y11) + C12Uν1(y12) + C21Uν2(y21) + C22Uν2(y22) = 0,

ν=1, 4, (or briefly
∑2

j,k=1CkjUνj(yjk) = 0) ,
(7)
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whose determinant is

∆(ρ) = det ∥Uνj(yjk)∥ , j, k= 1, 2,ν=1, 4

Taking into consideration (3), for values of forms Uνj(yjk) we have
U11(y11) =ρ, U11(y12) = 0,U12(y21) = 0,U12(y22) = 0,

U21 (y11)= 0,U21 (y12)= 0,U22 (y21)=ρcos2ρ3 , U22 (y22)= −ρsin2ρ
3 ,

U31(y11) = sinρ
3 , U31(y12) = cosρ3 , U32(y21) = 0,U32(y22) =− 1,

U41(y11) =ρcosρ3 , U41(y12) =− ρsinρ
3 , U42(y21) =− ρ, U42(y22) =− ρ2m

(8)

Opening determinant ∆(ρ), with the account (8) we obtain

∆ (ρ)=ρ3
(
sinρ + ρmcos

ρ

3
cos

2ρ

3

)
. (9)

From the formula (9) it is obvious, that function ∆ (ρ) has two series of zeros ρ1,n and
ρ2,n, which are asymptotically close to the zeros of the functions are cosρ3 and cos2ρ3 ,
respectively.

Reasoning as in [13, p.20], we obtain that for ρ1,n and ρ2,n the following asymptotic
formula are true

ρ1,n= 3πn+
3π

2
+O(

1

n
), ρ2,n=

3πn

2
+

3π

2
+O(

1

n
)

Taking into account (8), from (7) we obtain

c11= 0 ,

c21cos
2ρ

3
− c22sin

2ρ

3
= 0 ,

c22=c12cos
ρ

3
.

It is clear that in these relation cos2ρ3 ̸= 0 and choosing c12= cos2ρ3 , we get c22= cos2ρ3 cos ρ
3 ,

c21= cos ρ
3 sin2ρ

3 . Taking into account the obtained values of the coefficients in (6), and
substituting ρ = ρ1,n and ρ = ρ2,n there, respectively, we get that the eigenfunction
ui,n (x) , i = 1, 2;n ∈ Z+, corresponding to eigenvalue λi,n= (ρi,n)

2 i = 1, 2;n ∈ Z+ in
the following form

ui,n (x) =

{
cos

2ρi,n
3 cosρi,n x, x ∈

[
0, 13

]
,

cos
ρi,n
3 cosρi,n (1− x) , x ∈

[
1
3 , 1

]
,

i = 1, 2;n ∈ Z+

Theorem is proved.
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3. Construction of the Green’s function and the resolvents of the
linearized operator

Now let’s pass to construction of the Green’s function of problem (1) , (2). It is defined
as a kernel of integral representation for solution of the corresponding non-homogeneous
problem

y′′(x) + ρ2y(x) =f(x), (10)

satisfying boundary conditions (2). The solution of problem (10) ,(2) will be sought in the
form

y(x) =

{
y1(x), for x ∈

[
0, 13

]
,

y2(x),for x ∈
[
1
3 , 1

]
,

(11)

where {
y1(x) =c11y11(x) + c12y12(x) +

∫ 1
3
0 g(x, ξ, ρ)f(ξ)dξ, x ∈

[
0, 13

]
,

y2(x) =c21y21(x) + c22y22(x) +
∫ 1

1
3
g(x, ξ, ρ)f(ξ)dξ, x ∈

[
1
3 , 1

]
.

(12)

y11 (x) = eiρx, y12 (x) = e−iρx , x ∈
[
0,

1

3

]
;

y21 (x) = eiρ(x−
1
3), y22 (x) = e−iρ(x− 1

3), x ∈
[
1

3
, 1

]

g1 (x, ξ, ρ) =


− 1

2iρ

(
eiρ(x−ξ) − e−iρ(x−ξ)

)
, 0 ≤ x < ξ ≤ 1

3 ,

1
2iρ(e

iρ(x−ξ) − e−iρ(x−ξ)), 0 ≤< x ≤ 1
3 ,

(13)

g2(x, ξ, ρ) =


− 1

2iρ(e
iρ(x−ξ) − e−iρ(x−ξ)), 13 ≤ x < ξ ≤ 1,

1
2iρ(e

iρ(x−ξ) − e−iρ(x−ξ)), 13 ≤ ξ < x ≤ 1.

(13′)

Let us require that the function (11) satisfies the boundary conditions (2). Then for
definition of numbers Cj,k we obtain the system of algebraic equations

Uν(y) =
2∑

j,k=1

Cj,kUνj(yjk) +

∫ 1
3

0
Uν1(g)f(ξ)dξ +

∫ 1

1
3

Uν2(g)f(ξ)dξ= 0,ν=1, 4. (14)

Let’s define numbers Cj,k from (14) and substituting their values in (12), for solving the
problem (10), (12) we obtain the formula

y1(x) =
∫ 1

3
0 G11(x, ξ, ρ)f(ξ)dξ +

∫ 1
1
3
G12(x, ξ, ρ)f(ξ)dξ, x ∈

[
0, 13

]
,

y2(x) =
∫ 1

3
0 G21(x, ξ, ρ)f(ξ)dξ +

∫ 1
1
3
G22(x, ξ, ρ)f(ξ)dξ, x ∈

[
1
3 , 1

]
,
(14′)
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where

G11(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣∣∣
g y11 y12 0 0
Uν1(g) Uν1(y11) Uν1(y12) Uν2(y21) Uν2(y22)
... ... ... ... ...
ν=1, 4

∣∣∣∣∣∣∣∣

G12(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣∣∣
0 y11 y12 0 0
Uν2(g) Uν1(y11) Uν1(y12) Uν2(y21) Uν2(y22)
... ... ... ... ...
ν=1, 4

∣∣∣∣∣∣∣∣

G21(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣∣∣
0 0 0 y21 y22
Uν1(g) Uν1(y11) Uν1(y12) Uν2(y21) Uν2(y22)
... ... ... ... ...
ν=1, 4

∣∣∣∣∣∣∣∣

G22(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣∣∣
g 0 0 y21 y22
Uν2(g) Uν1(y11) Uν1(y12) Uν2(y21) Uν2(y22)
... ... ... ... ...
ν=1, 4

∣∣∣∣∣∣∣∣
and ∆(ρ) is a determinant from (7).

U11 (g)= − iρ

2iρ

(
eiρξ + e−iρξ

)
, U12(g) = 0

U21(g) = 0,U22(g) =
iρ

2iρ

(
eiρ(1−ξ) + e−iρ(1−ξ)

)

U31 (g)=
1

2iρ

(
eiρ(

1
3
−ξ) − e−iρ( 1

3
−ξ)

)
, U32 (g)=

1

2iρ

(
eiρ(

1
3
−ξ) − e−iρ( 1

3
−ξ)

)
(15)

U41(g) =
iρ

2iρ

(
eiρ(

1
3
−ξ) + e−iρ( 1

3
−ξ)

)
, U42(g) =

iρ

2iρ

(
eiρ(

1
3
−ξ) + e−iρ( 1

3
−ξ)

)
+

+
ρ2m

2iρ

(
eiρ(

1
3
−ξ) − e−iρ( 1

3
−ξ)

)
U11(y11) = iρ, U11(y12) = −iρ, U12(y21) = 0, U12(y22) = 0,

U21(y11) = 0, U21(y12) = 0, U22(y21) = iρe
2iρ
3 , U22(y22) = −iρe−

2iρ
3 ,
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U31(y11) = e
iρ
3 , U31(y12) = e−

iρ
3 , U32(y21) = −1, U32(y22) = −1,

U41(y11) = iρe
iρ
3 , U41(y12) = −iρe−

iρ
3 , U42(y21) = −iρ− ρ2m,U42(y22) = iρ− ρ2m.

Let’s substitute (15), (8) and (9) n determinants of formula for Gkj(x, ξ, ρ). Trans-
forming the received determinants similar to [14, p. 95], and then opening them, we obtain
the formula for the Green’s function components. We’ll formulate it as a lemma.

Lemma 2. For the Green’s function components Gkj(x, ξ, ρ) of the problem (1), (2)
the following expressions are true:

G11 (x, ρ, ξ) = ±ρ2e
iρ(x−ξ) − ρ2

△ (ρ)

(
2e−iρ − iρme−iρ = iρme−

iρ
3

)
eiρx · eiρξ−

− ρ2

△ (ρ)

(
2eiρ + iρme−

iρ
3 + iρmeiρ

)
eiρx · e−iρξ− (16)

− ρ2

△ (ρ)

(
2eiρ + 2iρme−

iρ
3 + iρmeiρ

)
e−iρx · e−iρξ−

− ρ2

△ (ρ)

(
2eiρ + iρmeiρ

)
e−iρx · e−iρξ, x ∈

[
0,

1

3

]
, ξ ∈

[
0,

1

3

]
,

G12 (x, ρ, ξ) = 2e−
2iρ
3 e−iρxe−iρ(ξ−1)

(
e

2iρ
3 − eiρ(ξ−

1
3
)eiρ(ξ−1)

) (
e2iρx + 1

)
(17)

G21 (x, ρ, ξ) = 2e−iρe−iρ(ξ− 1
3
)e−iρ(x− 1

3
)
(
e

iρ
3 eiρ(ξ−

1
3
)eiρx + 1

)(
e

4iρ
3 + e2iρ(x−

1
3
)
)

(18)

G22 (x, ρ, ξ) = ±ρ2eiρ(x−ξ)+
ρ2

△ (ρ)

(
(1− iρm) e

2iρ
3 − (1 + iρm) e

4iρ
3 + e

−2iρ
3

)
eiρ(x−

1
3)e−iρξ+

+
ρ2

△ (ρ)

(
e

−4iρ
3 − (1 + iρm) e

−2iρ
3 − e

4iρ
3

)
eiρ(x−

1
3)eiρξ− (19)

− ρ2

△ (ρ)

(
− (1 + iρm) e

2iρ
3 − (−3 + iρm) e

4iρ
3

)
e−iρ(x− 1

3)e−iρξ−

− ρ2

△ (ρ)

(
(1 + iρm)− (1 + iρm) e

2iρ
3

)
e−iρ(x− 1

3)eiρξ, x ∈
[
0,

1

3

]
, ρ ∈

[
0,

1

3

]
.

Let us now proceed to the construction of linearizing operator. By W k
p

(
0, 13

)
⊕

W k
p

(
1
3 , 1

)
we denote a space functions whose contractions on segments

[
0, 13

]
and

[
1
3 , 1

]
be-

long correspondingly to Sobolev spaces W k
p

(
0, 13

)
and W k

p

(
1
3 , 1

)
. Let’s define the operator

L in Lp(0, 1)⊕ C as follows:

D (L)=
{

û ∈ Lp(0, 1)⊕ C:û=
(
u,mu

(
1
3

))
, u ∈ W 2

p

(
0, 13

)⋃ (
1
3 , 1

)
,

u′(0) =u′(1) = 0,u
(
−1

3

)
=u

(
1
3

)
,

}
(20)
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and for û ∈ D (L)

Lû= (− u′′;u′
(
1

3
− 0

)
− u′

(
1

3
+ 0

)
, û ∈ D(L)). (21)

Lemma 3. Operator defined by the formula (20), (21) is a linear closed operator with
dense definitional domain in Lp(0, 1)⊕ C . Eigenvalues of the operator L and problem
(1), (2) coincide, and {ûk}k∈N0

are eigenvectors of the operator L , where N0 = N
⋃

{0} ,

ûi,n =

(
ui,n (x) ;mcos

2ρi,n
3

cos
ρi,n
3

)
, i = 1, 2;n ∈ Z+.

Proof. To prove the first part of the lemma we take (u, α) ∈ Lp(0, 1) ⊕ C and we
define the functional F (û) as follows:

F (û) =mu

(
1

3

)
− α.

Let us assume

Uν(û) =Uν(u),ν= 1, 2, 3.

Then F,Uν , ν= 1, 2, 3 are bounded linear functionals on W 2
p

(
0, 13

)⋃ (
1
3 , 1

)
⊕ C, but un-

bounded on Lp(0, 1)⊕ C. Therefore (see, for example, [12, pp. 27-29]) the set

D (L)=
{
û= (u, α),u ∈ W 2

p

(
0,

1

3

)⋃ (
1

3
, 1

)
, F (û) =Uν(û) = 0,ν= 1, 2, 3

}
.

is everywhere dense in Lp(0, 1) ⊕ C , and L is a closed operator as contraction of corre-
sponding closed maximal operator.

The second part of the lemma is verified directly.

The lemma is proved.

For construction resolvent of operator L , consider the equation

L û− λû=
û
f, (22)

where û ∈ D(L), f û= (f, β) ∈ Lp(0, 1)⊕ C. We can rewrite equation (22) in the form of
−u′′=λu+ f,
u′
(
−1

3

)
− u′

(
1
3

)
− λmu

(
1
3

)
=β,

Uν(u)= 0,ν= 1, 2, 3.
(23)

Lemma 4. For solution û =
(
u,mu

(
1
3

))
of the equation (22) it holds the following

representations

u (x, ρ) =
βρ2

△ (ρ)

(
e

2iρ
3 + e

−2iρ
3

) (
eiρx + e−iρx

)
+
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+

∫ 1
3

0
G11(x, ρ, ξ)f(ξ)dξ+

∫ 1

1
3

G12(x, ξ, ρ)f(ξ)dξ (24)

if x ∈
[
0, 13

]
.

u (x, ρ) =
βρ2

△ (ρ)

(
e

iρ
3 + e

−iρ
3

)(
eiρ(x−1) + e−iρ(x−1)

)
+

+

∫ 1
3

0
G21(x, ρ, ξ)f(ξ)dξ+

∫ 1

1
3

G22(x, ξ, ρ)f(ξ)dξ (25)

if x ∈
[
1
3 , 1

]
u

(
1

3
, ρ

)
=

βρ2

△ (ρ)

(
e

2iρ
3 + e

−2iρ
3

)(
e

iρ
3 + e

−iρ
3

)
+

+

∫ 1
3

0
G21(x, ρ, ξ)f(ξ)dξ+

∫ 1

1
3

G22(x, ρ, ξ)f(ξ)dξ. (26)

Proof. The solution of (23) will be sought in the form

u(x, ρ) =

{
C11y11(x) + C12y12(x) + y1(x), for x ∈

[
0, 13

]
,

C21y21(x) + C22y22(x) + y2(x), for x ∈
[
1
3 , 1

]
,

(27)

where y1(x) and y2(x) are defined by (14). Since y(x) , defined by (11) satisfies boundary
conditions (2), then

Uν(y) = 0,ν=1, 4. (28)

Let’s demand the function u(x, ρ) satisfy boundary conditions Uν(u) = 0,ν= 1, 2, 3,Uν(u)
=β. Then taking into account (28) from (27) we obtain{

C11Uν1(y11) + C12Uν1(y12) + C21Uν2(y21) + C22Uν2(y22) = 0,ν= 1, 2, 3;
C11U41(y11) + C12U41(y12) + C21U42(y21) + C22U42(y22) =β.

Solving this system with respect to unknowns Ckj , we get

C11=− β

∆(ρ)
U11(y12) [U22(y21)U32(y22)− U22(y22)U32(y21)] ,

C12=
β

∆(ρ)
U11(y11) [U22(y21)U32(y22)− U22(y22)U32(y21)] ,

C21=
β

∆(ρ)
U22(y22) [U11(y11)U31(y12)− U11(y12)U31(y11)] ,

C22=− β

∆(ρ)
U22(y21) [U11(y11)U31(y12)− U11(y12)U31(y11)] .

Substituting the received values of the coefficients Ckj in (27) and taking into account
formula (8) ,(16)-(19) , we obtain the validity of formulas (24) and (25) . And formula
(26) is obtained from (25) ( or from (24) ) by substitution x=1

3 .
Lemma is proved.
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4. Completeness of the eigenfunctions in spaces Lp(0,1)⊕C and Lp (0,1)

Theorem 2 . System {ûi, n}i=1,2;n∈Z+ of eigenvectors of the operator L is complete
in Lp (0, 1)⊕ C, 1 < p < ∞.

Proof. To prove the completeness of the system of eigenfunctions of the operator L
in Lp (0, 1)⊕ C we need to get the estimation of the resolvent of the operator L at great
values of |ρ|. We will use the following known inequalities

|sinρ| ≤ ce|ρ|sinφ, |cosρ| ≤ ce|ρ|sinφ, (29)

where ρ=reiφ, 0 ≤ φ ≤ π. Besides, outside of circles of the same radius δ with centres in
zero of sinρ the following estimation is true

|sinρ| ≥ mδe
rsinφ. (30)

From estimations (29) , (30) and from the formula (9) it follows that at great values of |ρ|
outside circles Kj,n (δ)= {ρ: |ρ− ρj,n|<δ} of radius δ with the centres in zero of ∆(ρ) the
following estimation is true

|∆(ρ)| ≥ Mδre
rsinφ. (31)

Assume G (δ)=C\
⋃

j,nKj,n (δ). From the representations (24), (25) considering the in-
equalities (29) –(31) we obtain the inequality

|u(x, ρ)| ≤ Cδ

|ρ|
, ρ ∈ G (δ) , |ρ| ≥ r0,

which fairly uniform on x ∈ [0, 1]. From the last estimation it follows that for the resolvent
R(λ) = (L − λI)−1 of the operator L outside of the above-stated circles the following
estimation is true ∥∥R(ρ2)

∥∥ ≤ Cδ

|ρ|
, |ρ| ≥ r0. (32)

Having estimation (32), by a standard method (see for example [16]) we obtain that
eigenfunctions of operator L form a complete system in Lp (0, 1)⊕ C.

Let us note that the system {ûi,n}i=1,2;n∈Z+ of eigenvectors of the operator L has a
biorthogonal-conjugate system {v̂i,n}i=1,2;n∈Z+ , that are the system of eigenvectors of the
conjugate operator L∗, which in its turn is the linearized operator of the conjugate spectral
problem:

v′′ + λv= 0,x ∈
(
0,

1

3

)⋃ (
1

3
, 1

)
, (1∗)

v′ (0)=v′ (1)= 0,

v

(
1

3
− 0

)
=v

(
1

3
+ 0

)
, (2∗)
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v′
(
1

3
− 0

)
− v′

(
1

3
+ 0

)
=λmv

(
1

3

)
.

Taking into account this by Theorem 2 we obtain

Corollary. System {ûi, n}i=1,2;n∈Z+ of the eigenvectors of the operator L is complete
and minimal in Lp (0, 1)⊕ C, 1 < p < ∞.

Now let us consider the completeness and minimality of a system {ui, n}i=1,2;n∈Z+ of
eigenfunctions of the problem (1), (2). It is clear that this system is overflowing in Lp (0, 1)
: One function of this system is unnecessary. Let us clarify the following question: Which
function can be excluded from the system while maintaining the properties of completeness
and minimality and which can not? The answer to this question is given by the following
theorem.

Theorem 3. Let n0 be some number from the set of indexes Z+ . Then the system
obtained from the system {ûi, n}i=1,2;n∈Z+ by excluding on arbitrary function ui,n0 is
complete and minimal in the space Lp (0, 1) , 1 < p < ∞

Proof. According to the above mentioned, the system {ui, n}i=1,2;n∈Z+ has a biortogonal-
conjugated system {v̂i, n}i=1,2;n∈Z+ , where

v̂n=

(
vn (x) ; mvn

(
1

3

))
,

and vn (x) are eigenfunctions of the adjoint problem (1∗) , (2∗) . Carrying out similar
calculations for eigenfunctions, we find that the formulas are valid

vi,n (x) =

{
ci,ncos

2ρi,n
3 cosρi,n x, x ∈

[
0, 13

]
,

ci,ncos
ρi,n
3 cosρi,n (1− x) , x ∈

[
1
3 , 1

]
,

i = 1, 2;n ∈ Z+

where ci,n− are normalization numbers. From this formula it is clear that if n0 is number,
from the set of index Z+ then vi,n0

(
1
3

)
̸= 0. Therefore, all statements of the theorem

follow from the results of [17] (see also [18]).
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