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Basis Property in Lp of Root Functions of Some Fourth-
Order Eigenvalue Problem
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Abstract. In this paper, we consider the eigenvalue problem for ordinary differential equations
of fourth order, two of the boundary conditions depend on the spectral parameter. We find
sufficient conditions under which the system of root functions of this problem forms a defect basis
in Lp, 1 < p < ∞, with a defect number 2.
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1. Introduction

We consider the following eigenvalue problem

ℓ(y) ≡ y(4)(x)− (q(x)y′)′ = λy(x)), x ∈ (0, l), (1.1)

y(0) = y′(0) = 0, (1.2)

y′′(1)− (aλ+ b)y′(1) = 0, (1.3)

Ty(1)− cλy(1) = 0, (1.4)

where λ ∈ C is a spectral parameter, Ty ≡ (py′′)′ − qy′, q is nonnegative absolutely
continuous function on [0, 1], a, b and c are real constants such that a > 0, b < 0 and
c > 0.

The location of eigenvalues on the real axis, the structure of the root subspaces, oscil-
lation properties of eigenfunctions of problem (1.1)-(1.4) and their derivatives was investi-
gated in [10]. Recall that this problem describes the flexural vibrations of a homogeneous
rod, in the cross sections of which the longitudinal force acts, the left end is fixed rigidly,
and the right end resiliently fastened and on this end an inertial mass is concentrated
(see [9, 10]). Obviously, to study this problem of mechanics, we need to study the basic
properties of the root functions of problem (1.1)-(1.4) in various function spaces.
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Note that the spectral properties, including the basis properties of root functions in
the Lebesgue spaces of linear eigenvalue problems for ordinary differential equations of
fourth order, were considered in [1-5, 11, 12] (see also references therein). In the present
paper, we study the basis properties in the space Lp (0, 1), 1 < p < ∞, of root functions
of the problem (1.1)-(1.4). We show that, under certain conditions, the system of root
functions of this problem, after removing two functions, forms a basis in the space Lp (0, 1),
1 < p < ∞, i.e. the system of root functions forms a defect basis in Lp (0, 1), 1 < p < ∞,
with a defect number 2.

2. Preliminary

Let H = L2(0, 1)⊕ C2 be a Hilbert space with the scalar product

(ŷ, ϑ̂)H =

1∫
0

y(x)ϑ(x)dx+ |a|−1ms̄+ |c|−1 nt̄,

where

ŷ = {y,m, n} ∈ H, v = {ϑ, s, t} ∈ H.

We define in the space H an operator

L̂ŷ = L̂{y,m, n} = {ℓ(y), y′′(1)− by′(1), T y(1)}

with the domain

D(L̂) =
{
y = {y,m, n} ∈ H : y ∈ W 2

4 (0, 1), ℓ(y) ∈ L2(0, 1), y(0) = y′(0) = 0,
m = ay′(1), n = cy(1)}

which is dense in H [12].
Obviously, the operator Lis well defined. By direct verification, we conclude that

problem (1.1)-(1.4) is equivalent to the following spectral problem

Lŷ = λŷ, ŷ ∈ D(L). (2.1)

This means that the eigenvalues λk, k ∈ N of problem (1.1)-(1.4) and problem (2.1)
coincide, and there is a one-to-one correspondence between the root functions of these
problems

yk ↔ ŷk = {yk,mk, nk}, mk = ay′k(1), nk = cyk(1), k ∈ N.

The problem (1.1)-(1.4) is strongly regular in the sense of [12]. Therefore, the spectrum
of this operator is discrete.

Note that the operator L is a non-self-adjoint, closed, compact resolvent operator in
H [6, 7].
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Since the operator L is not self-adjoint in H, let us introduce the operator J : H → H
by

Jŷ = {y,m, n} = {y,m,−n}.

The operator J is unitary and symmetric in H. The spectrum of this operator consists
of two eigenvalues: − 1 with multiplicity 1 and 1 with infinite multiplicity [8]. Hence this
operator generates a Pontryagin space Π1 = L2(0, 1) ⊕ C2 (see [6]) whose inner product
is defined as

(ŷ, ϑ̂)1 = ({y,m, n}, {ϑ, s, t})1 = (Jŷ, ϑ̂)H =

1∫
0

y(x)ϑ(x)dx+ a−1ms̄− c−1nt̄.

Suppose that the operator L∗ is an adjoint to the operator L in H.
By [10, Theorem 2.1] the operator L is self-adjoint in Π1. In view of [7, Section 3,

Proposition 50], we have
L∗ = JLJ. (2.2)

By virtue of [7, § 4, Theorem 4.2] the system of root vectors {ŷk}∞k=1, ŷk = {yk,mk, nk},
mk = ay′k(1), nk = cyk(1), of the operator L forms an unconditional basis in H.

We introduce the following boundary condition

y(1) cos δ − Ty(1) sin δ = 0, (2.3)

where δ ∈
[
0, π2

]
.

Along with problem (1.1)-(1.4) we shall consider the eigenvalue problem (1.1)-(1.3),
(2.3). It is known [1] that the eigenvalues of problem (1.1)-(1.3), (2.3) are real and positive,
and form an infinitely increasing sequence {λk, δ}∞k=1. Moreover, (i) the eigenfunction
yk, δ(x) corresponding to the eigenvalue λk, δ has exactly k− 1 simple zeros in the interval
(0, 1) for aλk, δ + b ≤ 0, and either k − 2 or k − 1 simple zeros for aλk, δ + b ≤ 0; (ii) the
function y′k, δ(x) has exactly k − 1 simple zeros in the interval (0, 1).

It follows from the maximal-minimal property of eigenvalues that

λ1, π
2
< λ1, π < λ2, π

2
< λ2, π < . . . < λk, π

2
< λk, π < . . . . (2.4)

Theorem 2.1 [10, Theorem 3.2]. For each fixed λ ∈ C problem (1.1)-(1.3) has a
unique non-trivial solution y(x, λ) with a constant factor. Moreover, y(x, λ) for each fixed
x ∈ [0, 1] is entire function of λ.

Let Bk = (λk−1, π, λk, π), k ∈ N, where λ0, π = −∞.
According to above arguments, Theorem 2.1 and relation (2.3), it is clear that the

function

G(λ) =
Ty(1, λ)

y(1, λ

is a meromorphic function of finite order defined on the set

B = (C\R) ∪

( ∞⋃
k=1

Bk

)
.
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The eigenvalues λk, π
2
and λk, π of problem (1.1)-(1.3) are zeros and poles of this function,

respectively.
Lemma 2.1. [10, Lemmas 3.1, 3.2]. The following relations hold:

dG(λ)

dλ
= − 1

y2(1, λ)


1∫

0

y2(x, λ)dx+ ay′2(1, λ)

 , λ ∈ B,

lim
λ→−∞

G(λ) = −∞.

Lemma 2.2. [10, Lemma 3.3]. For the function G(λ), the following representation
holds:

G(λ) = G(0) +
∞∑
k=1

λςk
λk(π)(λ− λk(π)

,

where ςk = res
λ=λk(π)

G(λ) and ςk < 0, k ∈ N.

Using Theorem 2.1 and Lemmas 2.1-2.3 in the paper [10] for problem (1.1)-(1.4) the
following result is obtained.

Theorem 2.2 [10, Theorem 4.1]. The eigenvalues of problem (1.1)-(1.4) are real and
simple, and form an infinite increasing sequence {λk}∞k=1 such that

λ1 ∈ (−∞, 0) and λk ∈ (λk−1,π
2
, λk, π) for k = 2, 3, . . . . (2.5)

For each k ∈ N let yk be the eigenfunction corresponding to the eigenvalue λk of prob-
lem (1.1)-(1.4).

Theorem 2.3 For sufficiently large k ∈ N the following asymptotic formulas hold:

4
√
λk =

(
k − 3

2

)
π +O

(
1

k

)
, (2.6)

yk(1)

y′k(1)
=

b

c
4
√
λk

(
1 +

1

c 4
√
λk

+O

(
1

k2

))
. (2.7)

The proof of this theorem is similar to that of [5, Theorems 4.2 and formula (5.18)].

3. Basis property of eigenfunctions of problem (1.1)-(1.4)

Suppose that the system {ϑ̂k}∞k=1, ϑ̂k = {ϑk, sk, tk}, is an adjoint system to the system
{ŷk}∞k=1, ŷk = {yk,mk, nk}. Since all eigenvalues of problem (1.1)-(1.4) are real and simple,
according to Lemma 2.1 we get

δk = (ŷk, ŷk)1 = ||yk||22 + ay′k
2
(1)− cy2k(1) ̸= 0. (3.1)



Basis Property in Lp of Root Functions 59

Then, analogously to [5, Lemma 5.1], we can show that

ϑ̂k = δ−1
k Jŷk, k ∈ N. (3.2)

Now suppose that r and l (r ̸= l) are arbitrary natural numbers. By (2.1), (2.2) and
(3.1), (3.2) we have the following relation

∆r,l =

∣∣∣∣ sr sl
tr tl

∣∣∣∣ = δ−1
r δ−1

l

∣∣∣∣ mr ml

−nr − nl

∣∣∣∣ =
−δ−1

r δ−1
l

∣∣∣∣ ay′r(1) ay′l(1)
cyr(1) cyl(1)

∣∣∣∣ =
= −acδ−1

r δ−1
l

∣∣∣∣ y′r(1) y′l(1)
yr(1) yl(1)

∣∣∣∣ = − acy′r(1)y
′
l(1)

∣∣∣∣∣ 1 1
yr(1)
y′r(1)

yl(1)
y′l(1)

∣∣∣∣∣ =
= − acy′r(1)y

′
l(1)

{
yl(1)

y′l(1)
− yr(1)

y′r(1)

}
. (3.3)

Remark 3.1. It follows from [3, Theorem 4.1] that the condition ∆r,l ̸= 0 is necessary
and sufficient in order to the system of eigenfunctions {yk(x)}∞k=1, k ̸=r,l of problem (1.1)-
(1.4) to form a basis in the space Lp(0, 1), 1 < p < ∞, (an unconditional basis for p = 2).

The main result of this paper is the following theorem.

Theorem 3.1. Suppose that r and l (r < l) are arbitrarily large enough natural num-
bers. Then the system of eigenfunctions {yk(x)}∞k=1, k ̸=r,l of problem (1.1)-(1.4) forms a
basis in space Lp(0, 1), 1 < p < ∞, which is an unconditional basis in L2(0, 1).

Proof. If r and l (r < l) are arbitrarily large enough natural numbers, then by (2.6)
and (2.7) from (3.3) we get

−∆r,l = acy′r(1)y
′
l(1)

{
yl(1)

y′l(1)
− yr(1)

y′r(1)

}
=

acy′r(1)y
′
l(1)

b

c

{
4
√
λl

(
1 +

1

c 4
√
λl

+O

(
1

l2

))
− 4
√

λr

(
1 +

1

c 4
√
λr

+O

(
1

r2

))}
=

= −acy′r(1)y
′
l(1)

b

c

{
4
√
λl +

1

c
+O

(
1

l

)
− 4
√
λr −

1

c
+O

(
1

r

)}
=

= acy′r(1)y
′
l(1)

b

c

{(
l − 3

2

)
π +O

(
1

l

)
−
(
r − 3

2

)
π +O

(
1

r

)}
>
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> acy′r(1)y
′
l(1)

b

c

{
(l − r)π − K

l
− K

r

}
> 0,

where K > 0 is some constant. Now the assertion of this theorem follows from Remark
3.1 by virtue of the last relation. The proof of this theorem is complete.
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