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On the Completeness and Minimality of Eigenfunctions
of the Indefinite Sturm-Liouville Problem with Conjuga-
tion Condition

Gasymov T.B.*, Hashimova U.G.

Abstract. In this work we consider the following spectral problem:

−y′′ = λω (x) y, x ∈ (−1, 0) ∪ (0, 1) ,

y(−1) = y (1) = 0,
y (−0) = ay (+0)
y′(−0) = by′(+0)


where a weight function ω(x) is in the following form:

ω (x) =

{
−α2, x ∈ (−1, 0) ,
1, x ∈ (0, 1) ,

α > 0 is a given number, λ is a spectral parameter, a and b are arbitrary complex numbers. The
theorem on the completeness and minimality of the eigenfunctions and associated functions of the
spectral problem in the spaces Lp(−1, 1) is proved.

Key Words and Phrases: completeness, minimality, eigenfunctions, indefinite Sturm-Liouville
problem.

2010 Mathematics Subject Classifications: 34B24

1. Introduction

Consider the spectral problem for the differential equation

−y′′ = λω (x) y, x ∈ (−1, 0) ∪ (0, 1) , (1)

with boundary conditions

y (−1) = y (1) = 0, (2)
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and with conjugation conditions {
y (−0) = ay (+0) ,
y′ (−0) = by′ (+0) ,

(3)

where ω(x)− is a sign-alternating weight function,

ω (x) =

{
−α2, x ∈ (−1, 0) ,
1, x ∈ (0, 1) ,

α > 0 is a given number, λ is a spectral parameter, a and b are non-zero arbitrary
complex numbers. Our goal in this work is to find asymptotic formulas for eigenvalues,
to prove theorems on the completeness and minimality of eigenfunctions and associated
functions of problem (1)-(3) in the spaces Lp (−1, 1) . Previously, such problems were
studied in the case a = b = 1, i.e. at the discontinuity point of the weight function,
as a conjugation condition the continuity of the solution and its derivative are required.
In works [1, 2, 3, 4, 5, 6], numerous applications of such problems are given, results are
obtained in the case p = 2, α = 1. The results of these works are based on the theory
of self-adjoint operators. Considering the case p ̸= 2, in work [7] the methods of [8] are
used, and also the methods of the theory of functions of a complex variable, in particular,
the results of Paley-Wiener [9] and Levinson [10] on nonharmonic Fourier series are used.
We also note the works [11, 12, 13], where ordinary differential operators of arbitrary
order with a indefinite weight function are studied, asymptotic formulas for eigenvalues
are found, and questions of convergence of expansions in eigenfunctions are investigated.

Recently, interest in spectral problems with a indefinite weight function has increased
in connection with attempts to solve the Dirichlet problems for the Lavrent’ev–Bitsadze
equation by the method of separation of variables. It is known [14, p. 303] that the problem
of transition through the sound barrier of steady two-dimensional irrotational flows of an
ideal gas in nozzles, when supersonic waves adjoin the nozzle walls near the minimum cross
section, is reduced to the Dirichlet problem for equations of mixed type. In [15, 16], the
Dirichlet problem for a mixed-type equation with one internal line of power degeneracy and
degeneracy at the boundary in a rectangular domain was studied, a uniqueness criterion
was established using spectral analysis methods, and the solution was constructed as the
sum of a series over a system of eigenfunctions. In [17], for the first time the Dirichlet
problem was studied for the Lavrent’ev–Bitsadze equation with two type-change internal
lines in a rectangular domain. A uniqueness criterion is established and the solution of
the problem is constructed as the sum of a series in a biorthogonal system of two mutually
conjugate spectral conjugation problems for a second-order ordinary differential operator
with a discontinuous coefficient at the highest derivative. The uniqueness of the solution
of the stated problem is proved based on completeness of the biorthogonal system in the
space L2 (−1, 1).

In [18, 19, 20] the problem for a discontinuous second-order differential operator with
a constant coefficient at the highest derivative and with a spectral parameter under conju-
gation conditions was studied, a system of eigenfunctions was found and investigated for
completeness and basicity in the spaces Lp ⊕ C and Lp.
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2. Asymptotics of eigenvalues

Let λ = ρ2. We also denote the linear forms included in the boundary conditions (2),
(3) as follows:

U11 (y) = y (−1) , U12 (y) ≡ 0
U21 (y) ≡ 0, U22 (y) = y (1)
U31 (y) = y (−0) , U32 (y) = −ay (+0)
U41 (y) = y′ (−0) , U42 (y) = −by′ (+0)

 (4)

After these denotations, problem (1)-(3) can be rewritten in the following form:

y′′ + ρ2ω (x) y = 0, x ∈ (−1, 0) ∪ (0, 1) , (5)

U1(y) = U11 (y) + U12 (y) = 0
U2(y) = U21 (y) + U22 (y) = 0
U3(y) = U31 (y) + U32 (y) = 0
U4(y) = U41 (y) + U42 (y) = 0

 (6)

It is known that equation (4) has a fundamental system of solutions y11 (x) = eαρx,
y12 (x) = e−αρx , on the interval (−1, 0) , and y21 (x) = eiρx , y22 (x) = e−iρx on the
interval (0, 1). Then the general solution of equation (1) (or (4)) has the form

y (x) =


c11y11 (x) + c12y12 (x) , x ∈ (−1, 0)

c21y21 (x) + c22y22 (x) , x ∈ (0, 1)

Let us choose the constants cik so that the function y(x) satisfies the boundary conditions
(5). Then, to find the numbers cik we get the following system of equations:

c11U11 (y11) + c12U11 (y12) + c21U12 (y21) + c22U12 (y22) = 0
c11U21 (y11) + c12U21 (y12) + c21U22 (y21) + c22U22 (y22) = 0
c11U31 (y11) + c12U31 (y12) + c21U32 (y21) + c22U32 (y22) = 0
c11U41 (y11) + c12U41 (y12) + c21U42 (y21) + c22U42 (y22) = 0


This system of equations has a nontrivial solution if and only if the main determinant
(characteristic determinant) ∆ (ρ) = det∥Uνi (yik)∥ν=1,4;i,k=1,2 of this system is zero. Thus,

the number λ = ρ2 is an eigenvalue of the spectral problem (1)-(3) if and only if the number
ρ is a solution of the following equation

∆ (ρ) =

∣∣∣∣∣∣∣∣
e−αρ eαρ 0 0
0 0 eiρ e−iρ

1 1 − a − a
αρ − αρ − biρ biρ

∣∣∣∣∣∣∣∣ = 4i∆0 (ρ) = 0,

where
∆0 (ρ) = αa sinρ chαρ+ b cosρ shαρ.
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Let us divide the complex ρ-plane into the following sectors:

Sk =

{
ρ = reiθ :

(k − 1)π

2
≤ θ ≤ kπ

2

}
, k = 0, 1, 2, 3.

We also denote by Qδ the domain of the ρ-plane, obtained from it by throwing out circles
with the same radius δ > 0 and with centers at zeros ∆ (ρ). The following theorem is true.

Theorem 1. The characteristic determinant ∆(ρ) of the spectral problem (1)-(3) has the
following properties:

1) There exists a positive number Mδ such that in the domain Sk ∩Qδ for sufficiently
large |ρ| the inequality

|∆(ρ)| ≥ Mδ |ρ| e±rsinθe±αrcosθ; (7)

is satisfied, where the constant Mδ is independent of ρ, but depends only on the
number δ > 0; in addition, the signs in the exponents on the right side of this
inequality are chosen depending on the sectors Sk as follows: ”+”, ”+” for ρ ∈ S0;
”+”, ”-” for ρ ∈ S1; ”-”, ”-” for ρ ∈ S2; ”-”, ”+” for ρ ∈ S3.

2) The zeros of the function ∆(ρ) are asymptotically simple and have the following
asymptotics

ρ1n = πn− γ +O
(
e−2πnα

)
, n → ∞,

ρ2n = − i

α

(
πn+ γ +

π

2
+O

(
e−απn

))
, n → ∞.

Proof. 1) Let us estimate the function ∆0 (ρ) in each sector Sk. Let ρ ∈ S0. Then the
inequalities

Re( iρ) ≤ 0 ≤ Re(− iρ), Re( − αρ) ≤ 0 ≤ Re(α ρ),

hold. Let us reduce the function ∆0 (ρ) to the following form:

∆0 (ρ) = e−iρeαρ
(
αa

(
1− e−2iρ

) (
1 + e−2αρ

)
+ b

(
1 + e−2iρ

) (
1− e−2αρ

))
.

All exponents inside the brackets on the right side of this equality have a non-positive
real part in the exponent, therefore they are bounded. Moreover, if ρ ∈ Qδ, then the
expression in brackets is bounded from below by some positive number Mδ in absolute
value. Therefore we have

|∆0 (ρ)| ≥ Mδ

∣∣e−iρeαρ
∣∣ = Mδe

rsinθeαrcosθ.

Hence we obtain the validity of inequality (7) for ρ ∈ S0 ∩Qδ. Other cases are considered
in a similar way.
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2) Define the number γ as follows:

cosγ =
αa√

α2a2 + b2
, sinγ =

b√
α2a2 + b2

, Reγ ∈
(
−π

2
,
π

2

)
.

Then the function ∆0 (ρ) with the help of elementary transformations can be represented
in the following form:

∆0 (ρ) =
1

2

√
α2a2 + b2e

αρ (
sin (ρ+ γ) + e−2αρsin (ρ− γ)

)
. (8)

Based on the Rouché’s theorem, we obtain that the zeros of the function ∆0 (ρ) , situated
in the strip |Imρ| ≤ h are asymptotically situated in a small neighborhood of the zeros
of the function sin (ρ+ γ) , and for large values of |ρ| near each zero of the function
sin (ρ+ γ) there is one zero of the function ∆0 (ρ) . Hence we obtain the asymptotics of
the zeros ∆0 (ρ) , situated in the strip |Imρ| ≤ h :

ρ1n = πn− γ +O
(
e−2απn

)
, n → ∞.

On the other hand, replacing ρ by iρ in formula (8), we obtain

∆0 (iρ) =
i

2

√
α2a2 + b2e

ρ (
cos (αρ− γ)− e−2ρcos (αρ+ γ)

)
. (9)

Applying the Rouché’s theorem again, from formula (9) we obtain that the zeros of the
function ∆0 (ρ) , situated in the strip |Reρ| ≤ h are asymptotically situated in a small
neighborhood of the zeros of the function cos (αρ− γ) , and for large values of |ρ| near
each zero of the function cos (αρ− γ) there is one zero of the function ∆0 (ρ) . Hence we
obtain the asymptotics of the zeros ∆0 (ρ) , situated in the strip |Reρ| ≤ h are:

ρ2n = − i

α

(
πn+ γ +

π

2
+O

(
e−απn

))
, n → ∞.

◀

3. Construction of the Green’s function of the spectral problem

The Green’s function of problem (1)-(3) is defined as the kernel of the integral repre-
sentation of the solution of the nonhomogeneous equation

−y′′(x)− ρ2ω (x) y(x) = f(x), (10)

Satisfying the boundary conditions (2),(3). Let us look for a solution of the problem
(10),(2),(3) in the form

y(x) =


y1(x), x ∈ [−1, 0] ,

y2(x), x ∈ [0, 1] ,
(11)
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where 
y1(x) = c11y11(x) + c12y12(x) +

∫ 0
−1 g1(x, ξ, ρ)f(ξ)dξ,

y2(x) = c21y21(x) + c22y22(x) +
∫ 1
0 g2(x, ξ, ρ)f(ξ)dξ.

(12)

g1(x, ξ, ρ) =


− 1

4αρ(e
αρ(x−ξ) − e−αρ(x−ξ)), −1 ≤ x < ξ ≤ 0,

1
4αρ(e

αρ(x−ξ) − e−αρ(x−ξ)), −1 ≤ ξ < x ≤ 0,

(13)

g2(x, ξ, ρ) =


1
2iρ(e

iρ(x−ξ) − e−iρ(x−ξ)), 0 ≤ x < ξ ≤ 1,

− 1
2iρ(e

iρ(x−ξ) − e−iρ(x−ξ)), 0 ≤ ξ < x ≤ 1.

(14)

We require that the function y(x), defined by formulas (11)-(14), satisfies the boundary
conditions (2) and conjugation conditions (3). Then, to determine the numbers cjk we
obtain the following system of equations:{

Uν (y) =
∑2

j,k=1 cjkUνj(yjk) +
∫ 0
−1 Uν1(g1)f(ξ)dξ +

∫ 1
0 Uν2(g2)f(ξ)dξ = 0,

ν = 1, 4.
(15)

Having determined the numbers cjk from system (15) and substituting their values into
(12), for the solution of equation (10) that satisfies (2), (3), we obtain the following formula:

y(x) =

{
y1(x) =

∫ 0
−1G11(x, ξ, ρ)f(ξ)dξ +

∫ 1
0 G12(x, ξ, ρ)f(ξ)dξ, x ∈ [−1, 0] ,

y2(x) =
∫ 0
−1G21(x, ξ, ρ)f(ξ)dξ +

∫ 1
0 G22(x, ξ, ρ)f(ξ)dξ, x ∈ [0, 1] ,

(16)

Here

Gik(x, ξ, ρ) =
1

∆ (ρ)
Hik(x, ξ, ρ), i, k = 1, 2, (17)

Hik(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δikgk (x, ξ) δ1ky11 (x) δ1ky12 (x) δ2ky21 (x) δ2ky22 (x)

U1k (gk) (ξ) U11 (y11) U11 (y12) U12 (y21) U12 (y22)

U2k (gk) (ξ) U21 (y11) U21 (y12) U22 (y21) U22 (y22)

U3k (gk) (ξ) U31 (y11) U31 (y12) U32 (y21) U32 (y22)

U4k (gk) (ξ) U41 (y11) U41 (y12) U42 (y21) U42 (y22)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

δik is the Kronecker symbol. Denote I1 = (−1, 0), I2 = (0, 1) and let χ1 (x) , χ2 (x) be the
characteristic functions of these intervals, respectively. The Green’s function of problem
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(1)-(3) is defined as follows:

G(x, ξ, ρ) =
2∑

i,k=1

χi (x)χk (ξ)Gik(x, ξ, ρ). (18)

Then the solution of equation (10) that satisfies conditions (2), (3) can be represented as

y(x) =

∫ 1

−1
G(x, ξ, ρ)f(ξ)dξ. (19)

According to denotation (4) and formulas (13), (14) we have

U11(g1) = − 1
4αρ

(
e−αρ(1+ξ) − eαρ(1+ξ)

)
, U12(g2) = 0,

U21(g1) = 0, U22(g2) = − 1
4iρ

(
eiρ(1−ξ) − e−iρ(1−ξ)

)
,

U31(g1) =
1

4αρ

(
e−αρξ − eαρξ

)
, U32(g2) =

a
4iρ

(
e−iρξ − eiρξ

)
,

U41(g1) =
1
4

(
e−αρξ + eαρξ

)
, U42(g2) = − b

4

(
e−iρξ + eiρξ

)
.

Taking into account these values, as well as the values Uν s (ysk) in formulas Hkj(x, ξ, ρ),
we obtain

H11(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

±1
4αρ

(
eαρ(x−ξ) − e−αρ(x−ξ)

)
eαρx e−αρx 0 0

− 1
4αρ

(
e−αρ(1+ξ) − eαρ(1+ξ)

)
e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

1
4αρ

(
e−αρξ − eαρξ

)
1 1 −a −a

1
4

(
e−αρξ + eαρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x, ξ ∈ I1,

here the sign ” + ” is taken in the case of −1 ≤ ξ < x ≤ 0, and the sign ”− ” in the case
of −1 ≤ x < ξ ≤ 0;

H12(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 eαρx e−αρx 0 0

0 e−αρ eαρ 0 0

1
4iρ

(
eiρ(1−ξ) − e−iρ(1−ξ)

)
0 0 eiρ e−iρ

a
4iρ

(
e−iρξ − eiρξ

)
1 1 −a −a

b
4

(
e−iρξ + eiρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x ∈ I1, ξ ∈ I2;
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H21(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 eiρx e−iρx

− 1
4αρ

(
e−αρ(1+ξ) − eαρ(1+ξ)

)
e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

1
4αρ

(
e−αρξ − eαρξ

)
1 1 −a −a

1
4

(
e−αρξ + eαρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x ∈ I2, ξ ∈ I1;

H22(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

±1
4iρ

(
eiρ(x−ξ) − e−iρ(x−ξ)

)
0 0 eiρ x e−iρ x

0 e−αρ eαρ 0 0

1
4iρ

(
eiρ(1−ξ) − e−iρ(1−ξ)

)
0 0 eiρ e−iρ

a
4iρ

(
e−iρξ − eiρξ

)
1 1 −a −a

b
4

(
e−iρξ + eiρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x, ξ ∈ I2,

here the sign ” + ” is taken in the case of −1 ≤ ξ < x ≤ 0, and the sign ”− ” in the case
of −1 ≤ x < ξ ≤ 0;

Theorem 2. For the components Gik(x, ξ, ρ) of the Green’s function of problem (1)-(3)
in the domain Qδ for sufficiently large values |ρ| uniformly in the variables x ∈i, ξ ∈k the
estimate

|Gik(x, ξ, ρ)| ≤
Cδ

|ρ|
, (20)

is true, where the positive number Cδ is independent of ρ, but depends only on the number
δ.

Proof. Let us perform the following transformations on the determinants Hik(x, ξ, ρ):
in the determinant H11(x, ξ, ρ) in the case −1 ≤ ξ < x ≤ 0 multiply the second and third
columns by − 1

4αρe
−αρξ, − 1

4αρe
αρξ respectively and add to the first column, then we get

H11(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
2αρe

−αρ(x−ξ) eαρx e−αρx 0 0

− 1
2αρe

−αρ(1+ξ) e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

− 1
2αρe

αρξ 1 1 −a −a

1
2e

αρξ αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e−αρ(x−ξ) eαρx e−αρ(1+x) 0 0

−e−αρ(1+ξ) e−αρ 1 0 0

0 0 0 e2iρ 1

−eαρξ 1 e−αρ −a −a

eαρξ 1 −e−αρ − b
α i

b
α i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(in the case −1 ≤ x < ξ ≤ 0 similar actions are performed by multiplying the second and
third columns by 1

4αρe
−αρξ, 1

4αρe
αρξ respectively); in the determinant H12(x, ξ, ρ) multiply

the fourth and fifth columns by 1
4iρe

−iρξ, 1
4iρe

iρξ respectively and add to the first column,
then we get

H12(x, ξ, ρ) =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 eαρx e−αρx 0 0

0 e−αρ eαρ 0 0

eiρ(1−ξ) 0 0 eiρ e−iρ

−eiρξ 1 1 −a −a

eiρξ −αi αi −b b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 eαρx e−αρ(1+x) 0 0

0 e−αρ 1 0 0

eiρ(1−ξ) 0 0 eiρ 1

−eiρξ 1 e−αρ −a −aeiρ

eiρξ 1 αie−αρ −b beiρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

in the determinantH21(x, ξ, ρ) multiply the second and third columns by− 1
4αρe

−αρξ, − 1
4αρe

αρξ
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respectively and add to the first column, then we get

H21(x, ξ, ρ) =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 eiρx e−iρx

−e−αρ(1+ξ) e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

−eαρξ 1 1 −a −a

eαρξ 1 −1 − b
α i

b
α i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 eiρx eiρ(1−x)

−e−αρ(1+ξ) e−αρ 1 0 0

0 0 0 eiρ 1

−eαρξ 1 e−αρ −a −aeiρ

eαρξ 1 −e−αρ − b
α i

b
α ie

iρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

in the determinant H22(x, ξ, ρ) in the case of 0 ≤ ξ < x ≤ 1 multiply the fourth and fifth
columns by 1

4iρe
−iρξ, 1

4iρe
iρξ , respectively and add to the first column, then we get

H22(x, ξ, ρ) =

=
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eiρ(x−ξ) 0 0 eiρx e−iρx

0 e−αρ eαρ 0 0

eiρ(1−ξ) 0 0 eiρ e−iρ

−eiρξ 1 1 −a −a

eiρξ −αi αi −b b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eiρ(x−ξ) 0 0 eiρx eiρ(1−x)

0 e−2αρ 1 0 0

eiρ(1−ξ) 0 0 eiρ 1

−eiρξ 1 1 −a −aeiρ

eiρξ −αi αi −b beiρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

( in the case 0 ≤ x < ξ ≤ 1 similar actions are performed by multiplying the second and
third columns by − 1

4iρe
−iρξ, − 1

4iρe
iρξ , respectively)

Thus, in the formulas obtained for Hik(x, ξ, ρ) in all determinants on the right side
of the last equalities, all exponents have a non-positive real part in the exponent, these
determinants for ρ ∈ S0 are uniformly bounded in variables x ∈ Ii, ξ ∈ Ik. A similar
property is established in other sectors Sk. It follows that for functions Hik(x, ξ, ρ) for
sufficiently large values of |ρ| uniformly in the variables x ∈ Ii, ξ ∈ Ik the estimate

|Hik(x, ξ, ρ)| ≤ Ce±r sin θe±αr cos θ, (21)
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holds, the signs here are taken in accordance with the rule specified in Theorem 1. Now,
taking into account inequalities (7) and (21) in formula (17), we obtain the validity of
inequality (20). ◀

4. Completeness and minimality of eigenfunctions in the space Lp

Recall that a system {un}n∈N of a Banach space X is called complete in X, if the
closure of the linear span of this system coincides with the entire space X, and minimal if
no element of this system is included in the closed linear span of the remaining elements of
this system. Recall also that a system is complete in X if and only if there is no nonzero
linear continuous functional that annihilates all elements of this system. A system is
minimal in X if and only if it has a biorthogonal system.

Denote by W 2
p (−1, 0)∪(0, 1) the space of functions from Lp (−1, 1), whose restrictions

to each of the intervals (−1, 0) and (0, 1) belong to the Sobolev spaces W 2
p (−1, 0) and

W 2
p (0, 1) respectively. Let us define an operator L in space Lp (−1, 1) as follows:

D (L) =
{
y ∈ W 2

p (−1, 0) ∪ (0, 1) : y (−1)− y (1) =

y (−0)− ay (+0) = y′ (−0)− by′ (+0) = 0
}

and for y ∈ D (L)

Ly = − 1

ω (x)
y′′.

Obviously, L is a densely defined closed operator in Lp (−1, 1) with a compact resolvent.
The eigenvalues of the operator L are the numbers λin = (ρin)

2 , i = 1, 2;n ∈ N. Denote
by {yin}i=1,2;n∈N the system of corresponding eigenfunctions and associated functions.

Theorem 3. System {yin}i=1,2;n∈N of eigenfunctions and associated functions of the op-
erator L is complete in space Lp (−1, 1) 1 < p < ∞.

Proof. To prove the completeness of the system {yin}i=1,2;n∈N in Lp (−1, 1) , 1 < p <
∞, let us estimate the norms of the resolvent of the operator L for sufficiently large values
of |ρ| .

Let ρ ∈ Qδ, |ρ| ≥ r0. Then, taking into account inequalities (20) in formula (18), we
obtain that the Green’s function uniformly in variables x, ξ ∈ [−1, 1] satisfies the inequality

|G (x, ξ, ρ)| ≤ Cδ

|ρ|
, ρ ∈ Qδ, |ρ| ≥ r0.

Taking into account this estimate in formula (19) for the function y (x), we obtain the
following estimate:

|y (x)| ≤ Cδ

|ρ|
∥f∥Lp

, ρ ∈ Qδ, |ρ| ≥ r0.
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Moreover, this inequality is satisfied uniformly in x ∈ [−1, 1]. As a consequence, hence we
get

∥y∥Lp
≤ Cδ

|ρ|
∥f∥Lp

, ρ ∈ Qδ, |ρ| ≥ r0.

The last inequality means that the for the resolvent R (λ) = (L− λI)−1 of the operator L
the following estimate ∥∥R (

ρ2
)∥∥ ≤ Cδ

|ρ|
, ρ ∈ Qδ, |ρ| ≥ r0, (22)

holds. Now suppose that the system of root functions of the operator L is not complete
in Lp (−1, 1). Then there exists a function g ∈ Lq (−1, 1) , q = p/ (p− 1) , orthogonal to
all root subspaces of the operator L, i.e.

⟨Qinf, g⟩ = 0, ∀f ∈ Lp (−1, 1) , i = 1, 2;n ∈ N.

Hence it follows that Q∗
ing = 0, i = 1, 2;n ∈ N ; here Qin denotes the Riesz projectors of

the operator L, i.e.

Qin =
1

2πi

∮
γin(δ)

R (λ) dλ,

where γin (δ) are the images of the circles γin (δ) = {ρ : |ρ− ρin| = δ} under the mapping
λ = ρ2. In this case it is obvious that Q∗

in, i = 1, 2;n ∈ N, are the Riesz projectors of
the adjoint operator L∗. This implies that R (λ, L∗) g is an entire function in the λ-plane.
On the other hand, according to estimate (22), the inequality

∥R (λ, L∗)∥ ≤ Cδ

|λ|
1
2

, λ ∈ Ωδ, |λ| ≥ R0, (23)

is true, where Ωδ denotes the image of the set Qδ under the mapping λ = ρ2. Then,
according to the maximum principle, inequality (23) is satisfied in the entire λ-plane and
in turn, we obtain R (λ, L∗) g → 0, |λ| → ∞. The latter, by Liouville’s theorem, the
entire function R (λ, L∗) g is constant. Then, differentiating this function and taking into
account the formula d

dλR (λ, L∗) = R (λ, L∗)2 we obtain that R (λ, L∗)2 g = 0. But, since
for λ ∈ ρ (L∗) the operator R (λ, L∗) is unique, then we obtain that g = 0. And this means
that the system {yin}i=1,2;n∈N of eigenfunctions and associated functions of the operator
L is complete in Lp(−1, 1).

Theorem is proved. ◀

Denote by {zin}i=1,2;n∈N the system of eigenfunctions and associated functions of the
adjoint operator L∗. The operator L∗ is the operator generated by the adjoint spectral
problem

z′′ + λω (x) z = 0, x ∈ (−1, 0) ∪ (0, 1)

z (−1) = z (1) = 0,

z (−0) = −α2

b
z (+0) ,

z′ (−0) = −α2

a z′ (+0) .


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Then the system {zin}i=1,2;n∈N (after appropriate normalization) is biorthogonal to the
system {yin}i=1,2;n∈N . Taking this fact into account, we obtain the following corollaries
from Theorem 3.

Corollary 1. System {yin}i=1,2;n∈N of eigenfunctions and associated functions of the
operator L is complete and minimal in Lp(−1, 1), 1 < p < ∞.

Corollary 2. System {zin}i=1,2;n∈N of eigenfunctions and associated functions of the
operator L∗ is complete and minimal in Lp(−1, 1), 1 < p < ∞.
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