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Inverse Boundary Value Problem for Benney-Luke
Linearized Equation with Nonlocal Time-integral
Conditions of Second Kind
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Abstract. In the paper we study an inverse boundary value problem with a time-dependent
unknown coefficient for a linearized Benney-Luke equation with nonlocal time- integral conditions
of second kind. The essence of the problem is to determine the unknown coefficient together
with the solution. The problem is considered in a rectangular domain. When solving the original
inverse problem, a transition is made from the original inverse problem to some auxiliary inverse
problem. The existence and uniqueness of the solution of the auxiliary problem is proved by means
of compressed mappings. Then the transition to the original inverse problem is made again, as a
result a conclusion is made about the solvability of the original inverse problem.
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1. Introduction

Many problems of mathematical physics, mechanics of continuum are boundary value
problems reduced to the integration of a differential equation or a system of partial equa-
tions under given boundary and initial conditions. Many problems of gas dynamics, theory
of elasticity, theory of plates and shells are reduced to the consideration of higher order
partial differential equations [1]. Differential equations of fourth order are of great in-
terest from the point of view of applications (see, e.i. [2, 3]). Benney-Luke type partial
differential equations have applications in mathematical physics (see [3]).

The problems in which together with the solution of one or another differential equa-
tion, it is necessary to determine the coefficient (coefficients) of the equation itself, or
the right hand side of the equation, in mathematics and in mathematical modeling are
called inverse problems. Theory of inverse problems for differential equations is a dynam-
ically developing section of modern science. Last time, the inverse problems arise in very
different fields of human activity as seismology, mineral exploration, biology, medicine,
quality control of industrial products, etc. that places them among the pressing problems
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of modern mathematics. Different inverse problems for certain types of partial differen-
tial equations have been studied in many works. Here first of all we note the works of
A.N.Tikhonov [4], M.M.Lavrent’ev [5, 6], V.K.Ivanov [7] and their followers. For more
information you can read the monograph of A.M.Denisov [9].

Theory of inverse boundary value problems for fourth order equations still remain
small studied. The works [? 10, 11, 12] have been devoted to the inverse boundary value
problems for the Benney–Luke equation.

The goal of the present paper is to prove the existence and uniqueness of the solution
of the inverse boundary value problem for the Benney-Luke equation with time non-local
integral conditions of second kind.

2. Statement of the problem and its reduction to the equivalent problem

Let us consider for the equation

utt(x, t)− uxx(x, t) + αuxxxx(x, t)− βuxxtt(x, t) = a(t)u(x, t) + f(x, t), (x, t) ∈ DT (1)

in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}, the inverse boundary value problem
with the nonlocal initial conditions

u(x, 0) =

∫ T

0
p1(t)u(x, t)dt+ φ(x), ut(x, 0) =

∫ T

0
p2(t)u(x, t)dt+ ψ(x)(0 ≤ x ≤ 1), (2)

the boundary conditions

ux(0, t) = 0, u(1, t) = 0, uxxxx(0, t) = 0, uxx(1, t) = 0(0 ≤ t ≤ T ) (3)

and with the additional condition

u(0, t) = h(t) (0 ≤ t ≤ T ), (4)

where α > 0, β > 0 are fixed numbers, f(x, t), p1(t), p2(t), φ(x), ψ(x), h(t) are the given
functions u(x, t), a(t) are the desired functions

We introduce the denotation

C̃4,2(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ) , uttx(x, t),

uttxx(x, t), uxxx(x, t), uxxxx(x, t) ∈ C(DT )} .

Definition 1. Under the classical solution of the inverse boundary value problem (1)-
(4) we understand the pair {u(x, t) , a(t)}of functions u(x, t) ∈ C̃4,2(DT ), a(t) ∈ C[0, T ]
satisfying the equation (1) and conditions (2)-(4) in the usual sense.

To study the problem (1)-(4) at first we consider the following problem:

y′′(t) = a(t) y(t) (0 ≤ t ≤ T ), (5)
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y(0) =

∫ T

0
p1(t)y(t)dt, y

′(0) =

∫ T

0
p2(t)y(t)dt, (6)

where a(t) ∈ C[0, T ], p1(t), p2(t) ∈ C[0, T ] are the given functions, y = y(t) is an un-
known function and under the solution of problem (5), (6) we understand the function
y(t) belonging to C2[0, T ] and satisfying condition of (5), (6) in the usual sense.

The following lemma is valid

Lemma 1 ([13]). Let us functions p1(t) ∈ C[0, T ], p2(t) ∈ C[0, T ], a(t) ∈ C[0, T ] and

∥a(t)∥C[0,T ] ≤ R = const.

Furthermore (
T ∥p2(t)∥ C[0,T ] + ∥p1(t)∥ C[0,T ] +

T

2
R

)
T < 1.

Then problem (5), (6) has only a trivial solution.

Along with the inverse boundary value problem (1)- (4) we consider the following
auxiliary inverse boundary value problem:

It is required to determine the pair {u(x, t), a(t)} of functions u(x, t) ∈ C̃4,2(DT ),
a(t) ∈ C[0, T ] from the relations (1)-(4) ,

h′′(t)− uxx(0, t) + αuxxxx(0, t)− βuxxtt(0, t) = a(t)h(t) + f(0, t) ( 0 ≤ t ≤ T ) (7)

The following theorem is valid

Theorem 1. Let φ(x), ψ(x) ∈ C[0, 1], pi(t) ∈ C[0, T ] (i = 1, 2), f(x, t) ∈ C(DT ),
h(t) ∈ C2[0, T ] , h(t) ̸= 0 (0 ≤ t ≤ T ) and the following agreement conditions be
fulfilled:

φ(0) = h(0) −
∫ T

0
p1(t)h(t)dt, ψ(0) = h′′(0)−

∫ T

0
p2(t)h(t)dt.

Then the following statements are valid:
A. Each classic solution {u(x, t), a(t)} of problem (1)-(4) is the solution of problem

(1)-(3), (7) as well;
B. Each solution of {u(x, t), a(t)} of problem (1)-(3), (7), such that(

T ∥p2(t)∥ C[0,T ] + ∥p1(t)∥ C[0,T ] +
T

2
∥a(t)∥C[0,T ]

)
T < 1 (8)

is the classic solution (1)-(4).

Proof. Let {u(x, t), a(t)} be a classic solution of problem (1)-(4). Substituting x = 0
in equation (1), we find:

utt(0, t)− uxx(0, t) + αuxxxx(0, t)− βuxxtt(1, t) =
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= a(t)u(0, t) + f(0, t) (0 ≤ t ≤ T ) , (9)

In what follows, assuming h(t) ∈ C2[0, T ] and differentiating twice (4), we have:

ut(0, t) = h′(t) , utt(0, t) = h′′(t) (0 ≤ t ≤ T ).

Taking into account these relations, from (9) allowing for (4) we obtain the fulfillment
of (7). Now, we assume that {u(x, t), a(t)} is the solution of problem (1)- (3), (7). Then
from (7) and (9) we obtain:

d2

dt2
(u(0, t)− h(t)) = a(t)(u(0, t)− h(t)) (0 ≤ t ≤ T ). (10)

By virtue of (2) and agreement conditions φ(0) = h(0) −
∫ T
0 p1(t)h(t)dt,

ψ(0) = h′′(0)−
∫ T
0 p2(t)h(t)dt we have:

u(0, 0)− h(0)−
∫ T

0
p1(t)(u(0, t)− h(t))dt = u(0, 0)−

∫ T

0
p1(t)u(0, t)dt−

= φ(0)−
(
h(0)−

∫ T

0
p1(t)h(t)dt

)
= 0,

ut(0, 0)− h′(0)−
∫ T

0
p2(t)(u(0, t)− h(t))dt = ut(0, 0)−

∫ T

0
p2(t)u(0, t)dt−

= φ(0)−
(
h′(0)−

∫ T

0
p2(t)h(t)dt

)
= 0. (11)

From (10), (11) by lemma 1 we conclude that condition (4) is fulfilled. The theorem
is proved.

3. Studying the existence and uniqueness of the classic solution of the
inverse boundary value problem

We will look for the first component u(x, t) of the solution {u(x, t), a(t)} of problem
(1)-(3), (7) in the form:

u (x, t) =
∞∑
k=1

uk (t) cosλkx (λk =
π

2
(2k = 1)), (12)

where

uk(t) = 2

∫ 1

0
u(x, t) cosλkx dx.

Applying the formal scheme of the Fourier method, from (1), (2) we obtain:

(1 + αλ2k)u
′′
k(t) + λ2k(1 + αλ2k)uk(t) = Fk(t;u, a, b) (0 ≤ t ≤ T ; k = 1, 2, ...), (13)
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uk(0) =

∫ T

0
p1(t)uk(t)dt+ φk, u

′
k(0) =

∫ T

0
p2(t)uk(t)dt+ ψk (k = 1, 2, ...), (14)

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = 2

∫ 1

0
f(x, t) cosλkxdx,

φk = 2

∫ 1

0
φ(x) cosλkxdx, ψk = 2

∫ 1

0
ψ(x) cos λkxdx (k = 1, 2, ...).

Solving the problem (13), (14), we find:

uk(t) =

(∫ T

0
p1(t)uk(t)dt+ φk

)
cosβkt+

1

βk

(∫ T

0
p2(t)uk(t)dt+ ψk

)
sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
Fk(τ ;u, a) sinβk (t− τ) dτ . (15)

where

βk = λk

√
1 + αλ2k
1 + βλ2k

(k = 1, 2, ...).

After substituting the expression uk(t) (k = 1, 2, ...) from (15) to (12), for determining
the component u (x, t) of the solution of problem (1)-(3), (7) we obtain:

u(x, t) =

∞∑
k=1

{(∫ T

0
p1(t)uk(t)dt+ φk

)
cosβkt+

1

βk

(∫ T

0
p2(t)uk(t)dt+ ψk

)
sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a, b) sinβk (t− τ) dτ

}
cos λkx. (16)

Now, from (7) allowing for (15), we obtain:

a(t)h(t) = h′′(t) − f(0, t)+

+

∞∑
k=1

(λ2k(1 + αλ2k)uk(t) + βλ2ku
′′
k(t)).

or taking into account

u′′k(t) = −
λ2k(1 + αλ2k)

1 + βλ2k
uk(t) +

1

1 + βλ2k
Fk (t;u, a)

we have:
a(t)h(t) = h′′(t) − f(0, t)+

+

∞∑
k=1

(
β2kuk(t) +

βλ2k
1 + βλ2k

Fk (t;u, a)

)
. (17)
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Now from (17) we find:

a(t) = [h(t)]−1

{
h′′(t) − f(0, t)+

+ +

∞∑
k=1

(
β2kuk(t) +

βλ2k
1 + βλ2k

Fk (t;u, a)

)}
. (18)

Substituting the expression uk (t) (k = 1, 2, ...) from (15) in (18), we obtain:

a(t) = [h(t)]−1

{
h′′(t) − f(0, t)+

+

∞∑
k=1

(
β2k

[(∫ T

0
p1(t)uk(t)dt+ φk

)
cosβkt+

1

βk

(∫ T

0
p2(t)uk(t)dt+ ψk

)
sinβk +

+
1

βk(1 + βλ2k)

∫ t

0
Fk(τ ;u, a) sinβk (t− τ) dτ

]
+

βλ2k
1 + βλ2k

Fk(t ;u, a)

}
. (19)

Thus, the solution of the problem (1)-(3), (7) is reduced to the solution of the system
(16),(19) with respect to the unknown functions u(x, t) and a(t).

The following lemma is very important for studying the uniqueness of the solution of
problem (1)-(3), (7)

Lemma 2. If {u(x, t), a(t)} is any classic solution of problem (1)-(3), (7), the function
uk(t) (k = 1, 2, . . .) determined by the relation

uk(t) = 2

∫ 1

0
u(x, t) cosλkx dx.(k = 1, 2, ....),

[0, T ] satisfy on the countable system (15).

Obviously, if uk(t) = 2
∫ 1
0 u(x, t) cosλkxdx(k = 1, 2, ...) is the solution of the system

(15), then the pair {u(x, t), a(t)} of functions u(x, t) =
∑∞

k=1 uk(t) cosλkx and a(t) is the
solution of the system (16), (19) .

The following corollary follows from lemma 2

Corollary 1. Let the system (16), (19) have a unique solution. Then problem (1)-(3),
(7) can have at most one solution, i.e. if problem (1)-(3), (7) has a solution, this solution
is unique.

1. Denote by B5
2,T [14], the totality of all the functions u(x, t) of the form

u(x, t) =

∞∑
k=1

uk(t) cosλkx ,
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considered in DT , where each of the functions uk(t) is continuous on [0, T ] and

I(u) ≡

{ ∞∑
k=1

(λ5k ∥uk(t)∥C[0,T ])
2

} 1
2

< +∞..

We determine the norm in this set as follows:

∥u(x, t)∥B5
2,T

= I(u).

2. Denote by E5
T a space consisting of the topological product

B5
2,T × C[0, T ].

The norm of the element z = {u, a} is determined by the formula

∥z∥E5
T
= ∥u(x, t)∥B5

2,T
+ ∥a(t)∥C[0,T ] .

It is known that B5
2,T and E5

T are Banach spaces.

Now in the space E5
T we consider the operator

Φ(u, a) = {Φ1(u, a),Φ2(u, a))} ,

where

Φ1(u, a) = ũ(x, t) =
∞∑
k=1

ũk(t) cosλkx,Φ2(u, a) = ã(t),

while ũk(t)(k = 1, 2, ...) and ã(t) are equal to the right hand sides of (15) and (19)
respectively.

It is easy to see that

1 + βλ2k > βλ2k,
1

1 + βλ2k
<

1

βλ2k
,

√
α

1 + β
λk ≤ βk ≤

√
1 + α

β
λk,

√
β

1 + α

1

λk
≤ 1

βk
≤
√

1 + β

α

1

λk
,

Taking into account this relation, we find:( ∞∑
k=1

(λ5k ∥ũk(t)∥C[0,T ])
2

) 1
2

≤
√
6

( ∞∑
k=1

(λ5k |φk|)2
) 1

2

+

+
√
6T ∥p1 (t)∥C[0,T ]

( ∞∑
k=1

(
λ5k ∥uk (t)∥C[0,T ]

)2) 1
2

+

√
6(1 + β)

α

( ∞∑
k=1

(λ4k |ψk|)2
) 1

2

+
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+

√
6(1 + β)

α
T ∥p2 (t)∥C[0,T ]

( ∞∑
k=1

(
λ5k ∥uk (t)∥C[0,T ]

)2) 1
2

+

+
1

β

√
6(1 + β)T

α

(∫ T

0

∞∑
k=1

(λ2k | fk (τ) |)2dτ

) 1
2

+

1

β

√
6(1 + β)

α
T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥uk(t)∥C[0,T ])
2

) 1
2

, (20)

∥ã(t)∥C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′′(t)−f(0, t)∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2
k

) 1
2

√1 + α

β

( ∞∑
k=1

(λ5k |φk|)2
) 1

2

+

+T ∥p1 (t)∥C[0,T ]

( ∞∑
k=1

(
λ5k ∥uk (t)∥C[0,T ]

)2) 1
2

+

√
1 + β

α

( ∞∑
k=1

(λ4k |ψk |)2
) 1

2

+

+

√
1 + β

α
T ∥p2 (t)∥C[0,T ]

( ∞∑
k=1

(
λ5k ∥uk (t)∥C[0,T ]

)2) 1
2

+

+
1

β

√
T (1 + β)

α

(∫ T

0

∞∑
k=1

(λ2k | fk (τ) |)2dτ

) 1
2

+

+
1

β

√
1 + β

α
T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥uk(t)∥C[0,T ])
2

) 1
2

 +

+

( ∞∑
k=1

(λ2k ∥fk (t)∥C[0,T ] | )
2dτ

) 1
2

+ ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥uk(t)∥C[0,T ])
2

) 1
2

 . (21)

Assume that the data of problem (1)-(3), (7) satisfy the following conditions:

1.α > 0, β > 0, p1(t) ∈ C[0, T ] , p2(t) ∈ C[0, T ] .

2.φ(x) ∈ C4[0, 1], φ(5)(x) ∈ L2(0, 1), φ
′(0) = φ(1) = φ′′′(0) = φ′′(1) = φ(4)(1) = 0.

3.ψ(x) ∈ C3[0, 1], ψ(4)(x) ∈ L2(0, 1), ψ
′(0) = ψ(1) = ψ′′′(0) = ψ′′(1) = 0.

4.f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), fx(0, t) = f(1, t) = 0 (0 ≤ t ≤ T ) .

5.h(t) ∈ C2[0, T ] , h(t) ̸= 0 (0 ≤ t ≤ T )
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Then from (20) and (21) we find:{ ∞∑
k=1

(
λ5k ∥ ũ2k(t) ∥C[0 , T ]

)2} 1
2

≤ A1(T )+

+B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C1(T ) ∥u(x, t)∥B5
2,T
, (22)

∥ã(t)∥C[0,T ] ≤ A2(T )+

+B2(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C2(T ) ∥u(x, t)∥B5
2,T
, (23)

where

A1(T ) =
√
6
∥∥∥φ(5)(x)

∥∥∥
L2(0,1)

+

√
6(1 + β)

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
1

β

√
6T (1 + β)

α
∥fxx(x, t)∥L2(DT ) ,

B1(T ) =
1

β

√
6(1 + β)

α
T,C1(T ) =

√
6T

(
∥p1 (t)∥C[0,T ] +

√
1 + β

α
∥p2 (t)∥C[0,T ]

)
,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′′(t)−f(0, t)∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2
k

) 1
2 [√1 + α

β

[∥∥∥φ(5)(x)
∥∥∥
L2(0,1)

+

√
1 + β

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
1

β

√
T (1 + β)

α
∥fxx(x, t)∥L2(DT )

]
+
∥∥∥∥fxx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

]}
,

B2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2
√

1 + α

β

(
1

β

√
1 + β

α
T + 1

)

C2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2
√

1 + α

β

[
T ∥p1 (t)∥C[0,T ]+

+

√
1 + β

α
T ∥p2 (t)∥C[0,T ]

]
.

Now, from (22)-(23) we obtain:

∥ũ(x, t)∥B6
2,T

+ ∥ã(t)∥C[0,T ] ≤ A(T )+

+B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+ C(T ) ∥u(x, t)∥B5
2,T
, (24)
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where

A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ) ,

C(T ) = C1(T ) + C2(T ) ,

We now can prove the following theorem

Theorem 2. If conditions 1- 5 are fulfilled and the inequality

(B(T )(A(T ) + 2) + C(T ))(A(T ) + 2) < 1 , (25)

is valid, the problem (1)-(3), (7)) has a unique solution in the sphere K = KR(∥z∥E5
T
≤

R ≤ A(T ) + 2) of the space E5
T .

Proof. In the space E5
T we consider the equation

z = Φz , (26)

where z = {u, a} , the components Φi(u, a) (i = 1, 2) of the operator Φ(u, a) are deter-
mined by the right hand sides of equations (16) and (19).

Let us consider the operator Φ(u, a) in the sphere K = KR from E5
T . Similar to (24)

we obtain that for all z, z1, z2 ∈ KR the following estimations are valid:

∥Φz∥E5
T
≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5

2,T
+ C(T ) ∥u(x, t)∥B5

2,T
≤

≤ A(T ) +B(T )(A(T ) + 2)2 + C(T )(A(T ) + 2) , (27)

∥Φz1 − Φz2∥E5
T
≤ B(T )R(∥a1(t)− a2(t)∥C[0,T ] + ∥u1(x, t)− u2(x, t)∥B5

2,T
)+

+C(T ) ∥u1(x, t)− u2(x, t)∥B5
2,T

. (28)

Now, by virtue of (25), from (27) and (28) it is clear that the operator Φ satisfies the
principle of compressed mappings on the set K = KR. Therefore the operator Φ in the
sphere K = KR has a unique fixed point {z} = {u , a}, that is the solution of equation
(26), i.e. it is a unique solution of the system (16), (19) in the sphere K = KR. Then
the function u(x, t), as an element of the space B5

2,T , is continuous and has continuous
derivatives ux(x, t),uxx(x, t),uxxx(x, t) and uxxxx(x, t) in DT .

Similar to [13] we can show that ut(x, t), utt(x, t), uttx(x, t), uttxx(x, t) ∈ C(DT ).

In what follows, we can check that equation (1) and conditions (2), (3), (7) are satisfied
in a usual sense. Consequently, {u(x, t), a(t)} is the solution of the problem (1)-(3), (7),
and by virtue of the Corollary of lemma 2 , it is unique in the sphere K = KR. The
theorem is proved.

The validity of the following statement follows directly from theorem 2 and by virtue
of theorem 1.
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Theorem 3. Let all the conditions of theorem 2 , and the following agreement conditions
be fulfilled

φ(0) = h(0) −
∫ T

0
p1(t)h(t)dt, ψ(0) = h′′(0)−

∫ T

0
p2(t)h(t)dt

and (
T ∥p2(t)∥ C[0,T ] + ∥p1(t)∥ C[0,T ] +

T

2
(A(T ) + 2)

)
T < 1

Then problem (1)-(4) has a classic unique solution in the sphere K = KR(∥z∥E5
T
≤

R = A(T ) + 2) of the space E5
T .
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