
Caspian Journal of Applied Mathematics, Ecology and Economics
V. 12, No 2, 2023, December
ISSN 1560-4055

Global Bifurcation from Infinity in Nonlinear Dirac Prob-
lems with Eigenvalue Parameter in the Boundary Con-
ditions

Nigar S. Aliyeva

Abstract. In this paper we consider global bifurcation from infinity for nonlinear Dirac system
with a spectral parameter in boundary conditions. We show the existence of two families of global
continua of the set of solutions to this problem, emanating from the points of the line R × {∞},
corresponding to the eigenvalues of the linear problem, which is obtained from the nonlinear
problem by setting the nonlinear term to zero and contained in classes of vector-functions with a
fixed oscillation count in the neighborhood of these points.
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1. Introduction

We consider the following nonlinear Dirac equation

(ℓw)(x) ≡ Bw′(x)− P (x)w(x) = λw(x) + g(x,w(x), λ), 0 < x < π, (1.1)

subject to the boundary conditions

U1(λ,w) := (λ cosα+ a0, λ sinα+ b0)w(0) =
(λ cosα+ a0) v(0) + (λ sinα+ b0)u (0) = 0,

(1.2)

U2(λ,w) := (λ cosβ + a1, λ sinβ + b1)w(π) =
(λ cosβ + aπ) v(0) + (λ sinβ + b0)u (π) = 0,

(1.3)

where

B =

(
0 1

−1 0

)
, P (x) =

(
p (x) 0
0 r(x)

)
, w(x) =

(
u(x)
v(x)

)
,
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λ ∈ C is an eigenvalue parameter, p (x), r(x) ∈ C([0, π];R), [0, π], α, β, a0, b0, a1 and b1
are real constants such that 0 ≤ α, β < π and

σ0 = a0 sinα− b0 cosα < 0, σ1 = a1 sinβ − b1 cosβ > 0. (1.4)

Here the function g =

(
g1
g2

)
∈ C

(
[0, π]× R2 × R;R2

)
satisfies the following condition:

g(x,w, λ) = o(|w|) as |w| → ∞, (1.5)

uniformly in (x, λ) ∈ [0, π] × Λ, for any bounded interval Λ ⊂ R (we denote by | · | the
Euclidean norm in R2).

In relativistic quantum mechanics and particle physics, the Dirac equation is a rel-
ativistic wave equation for describing spin-1/2 particles (i.e., fermions) [13, 19]. This
equation is consistent with both the principles of quantum mechanics and the special the-
ory of relativity, and was the first theory to fully explain the theory of relativity in the
context of quantum mechanics.

The nonlinear Dirac equation since the first nonlinear generalization of the linear Dirac
equation by the Russian physicist D.D. Ivanenko [11] naturally emerged as a practical
model in many physical systems. Note that the nonlinear Dirac equations model the
state of relativistic electrons (or other 1/2 particles) in external fields and during self-
interaction. For example, equation (1.1) in the case of p (x) = V (x)+m, r(x) = V (x)−m
and g(x,w, λ) = g̃(x, |w|)w, where V (x) is the potential function, m is the particle mass
and g̃ is a nonlinear self-coupling, describes the dynamics of self-acting massive Dirac
fermions with spin 1/2 inside external non-stationary electromagnetic potentials [19].

The global bifurcation from infinity in nonlinear Sturm-Liouville problems, fourth-
order nonlinear Sturmian systems and nonlinear Dirac systems in cases where the spectral
parameter is not contained in the boundary conditions and is contained in the boundary
condition has been well studied in [3-5, 9, 14-18, 20]. In these papers, the authors show the
existence of global connected components of the set of solutions to the nonlinear problems
under consideration, which branch from the bifurcation points and intervals of the line
R × {∞}. Moreover, these components are contained in classes of functions that have
oscillating properties of eigenvector-functions of linear problems, obtained from nonlinear
problems by equating nonlinear terms to zero, in the neighborhoods of bifurcation points
and intervals.

Note that global bifurcation from zero of nontrivial solutions to the nonlinear Dirac
problem (1.1)-(1.3) was studied in [2].

In this paper, we consider the structure and behavior of global continua bifurcating
from infinity to the nonlinear Dirac problem (1.1)-(1.3).

The rest of the article is organized as follows. Section 2 first provides information
about the oscillatory properties of the eigenvector functions of the linear problem (1.1)-
(1.3) for g ≡ 0 in terms of the Prüfer angular function (see [8]). Then we present the
construction of classes of vector-functions in C([0, π];R2) and C([0, π];R2) ⊕ R2, that
have these oscillatory properties of these eigenvector-functions. Moreover, the problem is
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reduced to equivalent operator equations in the space C([0, π];R2 ⊕ R2). Section 3 shows
the existence of global continua of nontrivial solutions to problem (1.1)-(1.3), emanating
from asymptotic bifurcation points and contained in the above-mentioned classes of vector-
functions in the neighborhoods of these points.

2. Preliminary

Let the continuous functions γ(λ) and δ(λ) on R be defined by

cot γ(λ) = − λ cosα+ a0
λ sinα+ b0

, γ

(
− b0
sinα

)
= 0, for α ̸= 0; (2.1)

cot δ(λ) = − λ cosβ + a1
λ sinβ + b1

, δ

(
− b0
sinβ

)
= 0, for β ̸= 0. (2.2)

In view of (1.4) the function γ(λ) strictly increases and the function δ(λ) strictly
decreases in the domains of their definition. Moreover, it follows from (2.1) and (2.2) that

γ(λ) ∈ (−α, π − α), lim
λ→−∞

γ(λ) = −α and lim
λ→+∞

γ(λ) = π − α, (2.3)

δ(λ) ∈ (−β, π − β), lim
λ→−∞

δ(λ) = π − β and lim
λ→+∞

δ(λ) = −β. (2.4)

Let E = C
(
[0, π]; R2

)
be the Banach space with the usual norm

||w|| = max
x∈[0, π]

|u(x)|+ max
x∈[0, π]

|v(x)|.

Let S be the subset of E defined as follows:

S = {w ∈ E : |u(x) + |v(x)| > 0, x ∈ [0, π]} .

For each fixed (λ,w) =

(
λ,

(
u
v

))
∈ R×S we define a continuous function θ(λ,w, x)

on [0, π] by

cot θ(λ,w, x) =
u(x)

v(x)
, θ(λ,w, 0) = γ(λ). (2.5)

Now we consider the linear Dirac problem
(ℓw)(x) = λw(x), x ∈ (0, π),
U1(λ,w) = 0,
U2(λ,w) = 0,

(2.6)

that obtained from (1.1)-(1.3) by setting g ≡ 0.
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Remark 2.1. Problem (2.6) was studied in [1], where it was shown that the eigenvalues
λk, k ∈ Z, of this problem are real and simple, and they can be numbered in ascending
order on the real axis

. . . < λ− k < . . . < λ− 2 < λ− 1 < λ0 < λ1 < λ2 < . . . < λk < . . . ,

so that the corresponding angular function θ(λk, wk, x) at x = 0 and x = π satisfies the
conditions

θ(λk, wk, 0) = γ(λk), θ(λk, wk, π) = δ(λk) + πk, (2.7)

where wk(x), k ∈ Z, is an eigenvector-function corresponding to the kth eigenvalue λk.
Note that the spectral properties of problem (2.6) was studied in [12] in the case of

α, β ∈ [−π/2, π/2].
We define the integers m− 1 and m1 as follows:

m− 1 = max {k ∈ Z : λk + p(x) < 0, λk + r(x) < 0, x ∈ [0, π]} ,

m1 = min {k ∈ Z : λk + p(x) > 0, λk + r(x) > 0, x ∈ [0, π]} .
(2.8)

Remark 2.2. From (2.8) it follows that the function θ(λk, wk, x) satisfies the first and
second parts of statement (ii) of [6, Theorem 2.1] for k ≥ m1 and k ≤ m− 1, respectively.

From now on ν will denote an element of {+ , −} that is, either ν = + or ν = −.
For each k ∈ Z, k ≥ m1 or k ≤ m− 1, each λ ∈ R and each ν we define the set Sν

k, λ

of functions w =

(
u
v

)
∈ S which satisfy the following conditions:

(i) θ(λ,w, π) = δ(λ) + kπ;
(ii) if k ≥ m1, then for fixed (λ,w), as x increases, the function θ cannot tend to a

multiple of π/2 from above, and as x decreases, the function θ cannot tend to a multiple
of π/2 from below; if k ≤ m− 1, then for fixed (λ,w), as x increases, the function θ cannot
tend to a multiple of π/2 from below, and as x decreases, the function θ cannot tend to a
multiple of π/2 from above.

(iii) the function νu(x) is positive in a deleted neighborhood of the point x = 0.

Let Sk, λ = S+
k, λ∪S−

k, λ. By Remarks 2.1 and 2.2 for each λ ∈ R the sets S+
k, λ, S

−
k, λ and

Sk, λ, k ≥ m1 and k ≤ m− 1, are nonempty. It follows from the definition of these sets that

for each fixed λ ∈ R they are disjoint and open in E. Moreover, if w =

(
u
v

)
∈ ∂Sν

k, λ

for some λ ∈ R, then there exists ξ ∈ [0, π] such that |w(ξ)| = 0, i.e., u(ξ) = v(ξ) = 0 [7,
Remark 2.7].

For each k ∈ Z, k ≥ m1 or k ≤ m− 1, and each ν let Sk and Sν
k be the subsets of S

defined by

Sk =
⋃
λ∈R

Sk,λ and Sν
k =

⋃
λ∈R

Sν
k,λ,

respectively. Note that the sets Sk and Sν
k are disjoint and open in E. Moreover, if

w =

(
u
v

)
∈ ∂Sν

k , then there exists ξ ∈ [0, π] such that u(ξ) = v(ξ) = 0.
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Let Ê be the Banach space E ⊕ R2 with the norm

||ŵ||0 =

∥∥∥∥∥∥
 w

l
s

∥∥∥∥∥∥
0

= ||w||+ |l|+ |s|,

and let
Ŝ = {ŵ = (w, l, s)t ∈ Ê : w ∈ S}.

For each k ∈ Z, k ≥ m1 or k ≤ m− 1, and each ν let Ŝν
k the subset of Ŝ given by

Ŝν
k =

ŵ =

 w
l
s

 : w ∈ Sν
k

 and Ŝk = Ŝ+
k ∪ Ŝ−

k .

Let A is a linear operator defined in Ê by

Aw = A

 w
l
s

 =

 ℓw
a0v(0) + b0u(0)
a1v(π) + b1u(π)

 (2.9)

on the domain

D(L) =

ŵ =

 w
l
s

 ∈ Ê : w ∈ C1([0, π];R2), l = − (v(0) cosα+ u(0) sinα) ,

s = − (v(π) cosβ + u(π) sinβ)} .

Here in the space C1([0, π]⊕ R2) the norm is determined by

||ŵ||1 =

∥∥∥∥∥∥
 w

l
s

∥∥∥∥∥∥
1

= ||w||+ ||w′||+ |l|+ |s|.

It is obvious that the operator L is well defined. Then the problem (2.1) is recast in the
equivalent operator form

Aŵ = λŵ, ŵ ∈ D(A). (2.10)

The operator A is closed in Ê with compact resolvent. Therefore, if λ = 0 is not an
eigenvalue of the operator A, then there exists A−1 : Ê → D̂(A) which is completely
continuous.

As the norms in R× E and R× Ê, we take

||(λ,w)|| =
{
|λ|2 + ||w||2

}1/2
and ||(λ, ŵ)||0 =

{
|λ|2 + ||ŵ||20

}1/2
,

respectively. By Bλ, ε, ε > 0, we denote the open ball in R× Ê of radius ε with center at
(λ, 0̂).
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Now let the nonlinear operators F : R× Ê → Ê and G : R× Ê → Ê are defined by

G(λ, ŵ) = G

λ,

 w
l
s

 =

 g(x,w, λ)
0
0

 =


g1(x,w, λ)
g2(x,w, λ)

0
0

 . (2.11)

Then problem (1.1)-(1.3) we can rewrite in the following equivalent operator form

Aŵ = λŵ +G(λ, ŵ). (2.12)

It is obvious that in this case there is a one-to-one correspondence between the solutions
of problems (1.1)-(1.3) and (2.12):

(λ,w) ↔ (λ, ŵ). (2.13)

Let
Â = A−1 and Ĝ = A−1G. (2.14)

Then problem (2.10) reduces to the following equivalent form

ŵ = λÂŵ + Ĝ(λ, ŵ). (2.15)

Moreover, the linear problem (2.10) reduces to the linear problem

ŵ = λÂŵ. (2.16)

Remark 2.3. The eigenvector function wk corresponding to the eigenvalue λk of prob-
lem (2.16) will be unique using the requirement

ŵk ∈ Ŝ+
k and ||ŵk||0 = 1.

3. Global bifurcation of solutions from infinity to problem (1.1)-(1.3)

Let C̃ be the set of nontrivial solutions of the nonlinear Dirac problem (2.12) (also to
problem (2.10)).

Remark 3.1. We add the points {(λ,∞) : λ ∈ R} to our space R× Ê and defining an
appropriate topology on the resulting set, we include that (λ,∞) is an element of R× Ê.

Theorem 3.1 For each k ∈ Z and each ν there exists a component Ĉν
k of the set Ĉ that

meet (λk,∞) with respect to the set R × Ŝν
k and for this set at least one of the following

statements holds:
(i) Ĉν

k meets (λ′
k,∞) with respect to the set R× Ŝν′

k′ for some (k′, ν ′) ̸= (k, ν);

(ii) Ĉν
k meets R̂ = {(λ, 0̂) : λ ∈ R} for some λ ∈ R;

(iii) the natural projection PR̂(Ĉ
ν
k ) onto R̂ is unbounded.

Proof. The proof will be carried out in three steps.
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Step 1. Recall that the operator Â : Ê → D(A) is completely continuous. Conse-
quently, there exists positive constants C1 such that for any ŵ ∈ Ê the following relation
holds:

||Âŵ||1 ≤ C1||ŵ||0. (3.1)

By (1.5) it follows from [5, Lemma 2] that for any sufficiently small ϵ ∈ (0, 1) there is
a sufficiently large ϱϵ > 0 such that for any x ∈ [0, π], w ∈ E, ||w|| > ϱϵ and λ ∈ Λ, the
relation

|g(x,w(x), λ)| < ϵC− 1
1 ||w|| (3.2)

holds.
We have the following relations

|l| ≤ |u(0)|+ |v(0)| ≤ ||w|| and |s| ≤ |u(π)|+ |v(π)| ≤ ||w||,

and consequently,
||ŵ||0 ≤ 3||w||. (3.3)

Let
ϱ̂ϵ = 3ϱϵ and ||ŵ||0 > ϱ̂ϵ.

Then, by (3.3), we have
||w|| > ϱϵ.

Hence it follows from (3.2) that for any x ∈ [0, π], ŵ ∈ E, ||ŵ||0 > ϱ̂ϵ and λ ∈ Λ,

|g(x,w, λ)| < ϵC− 1
1 ||w||. (3.4)

Therefore, in view of (3.4), by (3.1) for any λ ∈ Λ and ŵ ∈ Ê, ||ŵ||0 > ϱ̂ϵ, we get

||Ĝ(λ, ŵ)||0
||w||0

=
||Â(G(λ, ŵ))||0

||w||0
≤ C1||G(λ, ŵ)||0 = C1 max

x∈[0, π]
|g(x,w(x), λ)| < ϵ, (3.5)

which implies that
Ĝ(λ, ŵ) = o(||w||0) as ||w||0 → ∞, (3.6)

uniformly for λ ∈ Λ.
Step 2. Let (λ, ŵ) ∈ R × Ê such that ŵ ̸= 0̂. We define the continuous operator

Ĝ : Ê → Ê as follows:

Ĝ(λ, ŵ) =


||ŵ||20 Ĝ

(
λ, ŵ

||w||20

)
if ŵ ̸= 0̂,

0 if ŵ = 0̂.

(3.7)

Let ϵ > 0 be an arbitrary sufficiently small number, η̂ϵ = 1
ϱ̂ϵ

and ŵ ∈ Ê such that

||ŵ||0 < η̂ϵ. Then we have
∥∥∥ w
||ŵ||20

∥∥∥
0
> ϱ̂ϵ. Hence it follows from (3.5) that∥∥∥∥Ĝ(

λ,
ŵ

||w||20

)∥∥∥∥
0

<
ϵ

||w||0
for any λ ∈ Λ.
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In view of (3.7) from the last relation for any λ ∈ Λ, ŵ ∈ Ê, ||ŵ||0 < η̂ϵ, we get

||Ĝ(λ, ŵ)||0 = ||ŵ||20
∥∥∥∥Ĝ(

λ,
ŵ

||w||20

)∥∥∥∥
0

< ϵ ||ŵ||0. (3.8)

The relation (3.18) shows that the set

Ĝ(Λ× Bη̂ϵ) =
{
Ĝ(λ, ŵ) : (λ, ŵ) ∈ Λ× Bη̂ϵ

}
is bounded.

By (2.9) and (2.11)-(2.15) the vector-function ¯̂w =

(
ū
v̄

)
= Ĝ(λ, ŵ) satisfies the

following relation

Bw̄′(x)− P (x)w̄(x) = ||ŵ||20 g
(
x, ||ŵ||− 2

0 w(x), λ
)
, x ∈ (0, π). (3.9)

Then by (3.4) and (3.8) it follows from (3.9) that

|w̄′(x)| ≤ |p (x)||ū(x)|+ |r(x)||v̄(x)|+ ||ŵ||20 |g(x,
w(x)
||ŵ||20

, λ)| ≤ M ||w̄||+ ϵC− 1
1 ||w|| ≤

ϵM ||ŵ||0 + ϵC− 1
1 ||ŵ||0 < ϵ (M + C1) η̂ϵ,

where M = max{||p (x)||∞, ||r(x)||∞} . Hence it follows from Arzelà-Ascoli theorem that
the set Ĝ(Λ× Bη̂ϵ) is compact in R× Ê, i.e. operator Ĝ is completely continuous.

Step 3. Let (λ, ŵ) be a nontrivial solution of the problem (2.15). Setting ŵ = w
||ŵ||20

we have ||ŵ||0 = 1
||ŵ||0 and w = ŵ

||ŵ||20
. Then dividing (2.15) by ||ŵ||20 and using (3.7), we

get the problem
ŵ = λÂŵ + Ĝ(λ, ŵ). (3.10)

Let C ⊂ R× Ê be the set of nontrivial solutions of problem (3.10).
By (3.7) we have

Ĝ(λ, ŵ) = o(||ŵ||0) as ||ŵ||0 → 0, (3.11)

uniformly in λ ∈ Λ. Since the characteristics values of problem (2.16) are eigenvalues of
problem (1.1)-(1.3) and are simple, by (3.11) it follows from [15, Theorem 1.3] that for each
k ∈ Z there exists a continuum Ĉν

k of C that meet (λk, 0̂) and either (i) Ĉν
k is unbounded

in R × Ê, or (ii) Ĉν
k meets (λ′

k, 0̂) for some k′ ̸= k. Note that we can decomposed Ĉν
k

into two subcontinua Ĉ+
k and Ĉ−

k using the construction that is presented by E.N. Dancer
in [10, pp. 1070-1071]. Consequently, there exists sufficiently small εk > 0 such that if
(λ, ŵ) ∈ Ĉν

k ∩ B̂λk, ϵk , then

λ = λk + o(|ς|), ŵ = ςŵk + ŵ with ŵ = o(|ς|), (3.12)

where ς ∈ Rν (R+ = (0,+∞) and R+ = (−∞, 0)). Since for each k ∈ Z, k ≥ m1 or
k ≤ m− 1, the set Ŝν

k is open in R× Ê, by Remark 2.3, it follows from (3.12) that

Ĉ+
k ∩ B̂λk, ϵk ⊂ R× Ŝ+

k , Ĉ−
k ∩ B̂λk, ϵk ⊂ R× Ŝ−

k for k ≥ m1 or k ≤ m− 1. (3.13)
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The relations in (3.13) show that for each k ∈ Z, k ≥ m1 or k ≤ m− 1, the subcontinua
Ĉ+
k and Ĉ−

k meet the bifurcation point (λk, 0̂) with respect to the sets R× Ŝ+
k and R× Ŝ−

k ,
respectively. Moreover, by [10, Theorem 2] for each k ∈ Z, k ≥ m1 or k ≤ m− 1, and each
ν the subcontinuum Ĉν

k is either unbounded in R× Ê or there exists some (k′, ν ′) ̸= (k, ν)

such that Ĉν
k meets (λk′ , 0̂) with respect to the set R× Ŝν′

k′ . Should be noted that if Ĉν
k is

unbounded in R× Ê, then the following two cases are possible: (a) the natural projection
PR(Ĉ

ν
k) of Ĉν

k onto R is unbounded; (b) the natural projection PR(Ĉ
ν
k) of Ĉν

k onto R is
bounded.

Now we consider the following inversion (see [16, 17])

H : (λ, ŵ) → (λ, ŵ) =

(
λ,

ŵ

||ŵ||20

)
, w ∈ Ê.

By (3.6) and (3.11) it follows from the above arguments that the inversion H turns a
bifurcation at infinity problem (2.15) into a bifurcation from zero problem (3.10). In this
case, the inversion H maps the set Ĉ into Ĉ and, heuristically, interchanges points (λ, 0̂),
λ ∈ R, (respectively, (λ,∞), λ ∈ R) with points (λ,∞), λ ∈ R (respectively, (λ, 0̂), λ ∈ R).
By Ĉν

k we denote the inverse image H− 1(Ĉν
k) of the set Ĉν

k under transformation H. Then

the statements of the theorem about the sets Ĉν
k directly follow from the above-mentioned

properties of the set Ĉν
k under the inversion of H. The proof of this theorem is complete.

Now by (2.13) it follows from Theorem 3.1 the following result.
Theorem 3.1 For each k ∈ Z and each ν there exists a component Cν

k of the set C that
meet (λk,∞) with respect to the set R × Sν

k and for this set at least one of the following
statements holds:

(i) Cν
k meets (λ′

k,∞) with respect to the set R× Sν′
k′ for some (k′, ν ′) ̸= (k, ν);

(ii) Cν
k meets R = {(λ, 0̃) : λ ∈ R} for some λ ∈ R;

(iii) the natural projection PR(Cν
k ) onto R is unbounded.
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