Nodal Solutions of Some Nonlinear Dirac Problems

Humay Sh. Rzayeva

Abstract

In this paper we consider the nonlinear boundary value problem for the one-dimensional Dirac operator. We show the existence of pair of nodal solutions of this problem. The proof of our main result based on a method on bifurcation from zero and infinity.

Key Words and Phrases: nonlinear Dirac equation, eigenvalue, eigenvector-function, bifurcation from zero, bifurcation from infinity, nodal solution

2010 Mathematics Subject Classifications: 34A30, 34B15, 34C23, 34K29, 47J10, 47J15

1. Introduction

We consider the following nonlinear Dirac equation

$$
\begin{equation*}
(\ell w)(x) \equiv B w^{\prime}(x)-P(x) w(x)=s f(w(x)), 0<x<\pi, \tag{1.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& U_{1}(w):=(\sin \alpha, \cos \alpha) w(0)=v(0) \cos \alpha+u(0) \sin \alpha=0, \tag{1.2}\\
& U_{2}(w):=(\sin \beta, \cos \beta) w(\pi)=v(\pi) \cos \beta+u(\pi) \sin \beta=0, \tag{1.3}
\end{align*}
$$

where

$$
B=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), P(x)=\left(\begin{array}{cc}
p(x) & 0 \\
0 & r(x)
\end{array}\right), w(x)=\binom{u(x)}{v(x)},
$$

$\lambda \in \mathbb{C}$ is an eigenvalue parameter, $p(x), r(x) \in C([0, \pi] ; \mathbb{R}), \alpha, \beta$, are real constants such that $0 \leq \alpha, \beta<\pi$. Here s is a nonzero real number and the function $f=\binom{f_{1}}{f_{2}} \in$ $C\left(\mathbb{R}^{2} \times \mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ satisfies the following condition:

$$
\begin{equation*}
f(w)=\gamma w+h(w) \text { and } f(w)=\delta w+\hbar(w), \tag{1.4}
\end{equation*}
$$

where $\gamma, \delta(\gamma \neq \delta)$ are positive constants and

$$
\begin{align*}
& h(w)=\binom{h_{1}(w)}{h_{2}(w)}=o(|w|) \text { as }|w| \rightarrow 0, \tag{1.5}\\
& \hbar(w)=\binom{\hbar_{1}(w)}{\hbar_{2}(w)}=o(|w|) \text { as }|w| \rightarrow \infty \tag{1.6}
\end{align*}
$$

(here by $|\cdot|$ we denote the norm in \mathbb{R}^{2}).
The Dirac equations describing spin- $1 / 2$ particles, such as electrons and positrons, play the important role in both physics and mathematics. The nonlinear Dirac equations describes the self-action in quantum electrodynamics and used as an effective theory in atomic and gravitational physics (see [14]).

The existence of nodal solutions of boundary value problems for ordinary differential operators of second and fourth orders was study in [5-11]. In these papers, the authors, using the bifurcation technique, show the existence of solutions of problems they consider, contained in classes of functions with a fixed usual oscillation count.

In this paper, we will show the existence of nodal solutions of problem (1.1)-(1.3) using global bifurcation results from zero and infinity that we previously obtained for nonlinear Dirac eigenvalue problems.

2. Preliminary

Let (b.c.) be denote the set of vector-functions that satisfies the boundary conditions (1.2) and (1.3).

We consider the following nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
(\ell w)(x)=\lambda w(x)+g(x, w(x), \lambda), x \in(0, \pi), \tag{2.1}\\
w \in(\text { b.c. }) .
\end{array}\right.
$$

We will impose one or the other of the following conditions on the nonlinear term $g(x, w, \lambda) \in$ $C\left([0, \pi] \times \mathbb{R}^{2} \times \mathbb{R} ; \mathbb{R}^{2}\right):$

$$
\begin{equation*}
g(x, w, \lambda)=o(|w|) \text { as }|w| \rightarrow 0 \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
g(x, w, \lambda)=o(|w|) \text { as }|w| \rightarrow+\infty, \tag{2.3}
\end{equation*}
$$

uniformly with respect to $(x, \lambda) \in[0, \pi] \times \Lambda$, for any bounded interval $\Lambda \subset \mathbb{R}$.
By conditions (2.2) and (2.3) the nonlinear problem (2.1) is linearizable both at zero and at infinity, and the corresponding linear problem is

$$
\left\{\begin{array}{l}
(\ell w)(x)=\lambda w(x), x \in(0, \pi), \tag{2.4}\\
w \in(b . c .) .
\end{array}\right.
$$

Let E be the Banach space $C\left([0, \pi] ; \mathbb{R}^{2}\right) \cap\{w: U(w)=0\}$ with the norm $\|w\|_{0}=$ $\max _{x \in[0, \pi]}|u(x)|+\max _{x \in[0, \pi]}|v(x)|$. We denote by S a subset of E, which defined as follows:

$$
S=\{w \in E:|u(x)+|v(x)|>0, \forall x \in[0, \pi]\}
$$

As in [2] (see also [4]), for each $w=\binom{u}{v} \in S$ we define a continuous function $\theta(w, x)$ on $[0, \pi]$ by

$$
\begin{equation*}
\tan \theta(w, x)=\frac{v(x)}{u(x)}, \theta(w, 0)=-\alpha \tag{2.5}
\end{equation*}
$$

Theorem 2.1 [2, Theorem 3.1]. The eigenvalues $\lambda_{k}, k \in \mathbb{Z}$, of the problem (2.4) are real and simple, and can be numbered in ascending order on the real axis

$$
\ldots<\lambda_{-k}<\ldots<\lambda_{-1}<\lambda_{0}<\lambda_{1}<\ldots<\lambda_{k}<\ldots
$$

so that for the eigenvector-function $w_{k}(x), k \in \mathbb{Z}$, corresponding to the eigenvalue λ_{k}, the angular function $\theta\left(w_{k}, x\right)$ at $x=\pi$ satisfy the condition

$$
\begin{equation*}
\theta\left(w_{k}, \pi\right)=-\beta+k \pi \tag{2.6}
\end{equation*}
$$

The eigenvector-functions $w_{k}(x)=\binom{u_{k}(x)}{v_{k}(x)}$ have, with a suitable interpretation, the following oscillation properties: if $k>0$ and $k=0, \alpha \geq \beta$ (except the cases $\alpha=\beta=0$ and $\alpha=\beta=\pi / 2)$, then

$$
\begin{equation*}
\binom{s\left(u_{k}\right)}{s\left(v_{k}\right)}=\binom{k-1+\chi(\alpha-\pi / 2)+\chi(\pi / 2-\beta)}{k-1+\operatorname{sgn} \alpha} \tag{2.7}
\end{equation*}
$$

and if $k<0$ and $k=0, \alpha<\beta$, then

$$
\begin{equation*}
\binom{s\left(u_{k}\right)}{s\left(v_{k}\right)}=\binom{|k|-1+\chi(\pi / 2-\alpha)+\chi(\beta-\pi / 2)}{|k|-1+\operatorname{sgn} \beta} \tag{2.8}
\end{equation*}
$$

where $s(g)$ the number of zeros of the function $g \in C([0, \pi] ; \mathbb{R})$ in the interval $(0, \pi)$ and

$$
\chi(x)= \begin{cases}0, & \text { if } x \leq 0 \\ 1, & \text { if } x>0\end{cases}
$$

Moreover, the functions $u_{k}(x)$ and $v_{k}(x)$ have only nodal zeros in the interval $(0, \pi)$.
For each $k \in \mathbb{Z}$ and each ν, let S_{k}^{ν} denote the set of vector functions $w \in S$ with the following properties:
(i) $\theta(w, \pi)=-\beta+k \pi$;
(ii) if $k>0$ or $k=0, \alpha \geq \beta$ (except the cases $\alpha=\beta=0$ and $\alpha=\beta=\pi / 2$), then for fixed w, as x increases from 0 to π, the function θ cannot tend to a multiple of $\pi / 2$ from above, and as x decreases, the function θ cannot tend to a multiple of $\pi / 2$ from below; if
$k<0$ or $k=0, \alpha<\beta$, then for fixed w, as x increases, the function θ cannot tend to a multiple of $\pi / 2$ from below, and as x decreases, the function θ cannot tend to a multiple of $\pi / 2$ from above;
(iii) the function $\nu u(x)$ is positive in a deleted neighborhood of $x=0$.

Remark 2.1. By (2.5), Theorem 2.1 and [2, Remark 2.1] we have $w_{k} \in S_{k}=S_{k}^{-} \cup S_{k}^{+}$, in other words the sets S_{k}^{-}, S_{k}^{+}and S_{k} are nonempty. From the definition of the sets S_{k}^{-}, S_{k}^{+}and S_{k} it can be seen that they are disjoint and open in E.

Now for problem (1.1)-(1.3) we can give global bifurcation results obtained earlier in [1, 3].

Theorem 2.2 [3, Theorem 3.1]. Let condition (2.2) holds. Then for each $k \in \mathbb{Z}$ and each ν, there exists a continuum C_{k}^{ν} of solutions of problem (2.1) which contains ($\lambda_{k}, \tilde{0}$), is lies in $\left(\mathbb{R} \times S_{k}^{\nu}\right) \cup\left\{\left(\lambda_{k}, \tilde{0}\right)\right\}$ and is unbounded in $\mathbb{R} \times E$.

Theorem 2.3 [1, Theorem 1]. Let condition (2.3) holds. Then for each $k \in \mathbb{Z}$ and each ν there exists a continua D_{k}^{ν} of solutions of problem (2.1) which contains $\left(\lambda_{k}, \infty\right)$ and has the following properties:
(i) there exists a neighborhood V_{k} of $\left(\lambda_{k}, \infty\right)$ in $\mathbb{R} \times E$ such that $V_{k} \cap D_{k}^{\nu} \subset \mathbb{R} \times S_{k}^{\nu}$;
(ii) either D_{k}^{ν} meets $\left(\lambda_{k}^{\prime}, \infty\right)$ with respect to the set $\mathbb{R} \times S_{k^{\prime}}^{\nu^{\prime}}$ for some $\left(k^{\prime}, \nu^{\prime}\right) \neq(k, \nu)$, or D_{k}^{ν} meets $(\lambda, \tilde{0})$ for some $\lambda \in \mathbb{R}$, or D_{k}^{ν} has an unbounded projection onto $\mathbb{R} \times\{\tilde{0}\}$.

3. Existence of nodal solutions to the nonlinear problem (1.1)-(1.3)

In this section, for each $k \in \mathbb{Z}$ and each ν, an interval is determined for s in which there are solutions to the problem (1.1)-(1.3) contained in the set S_{k}^{ν}.

Theorem 1. Let $\lambda_{k} \neq 0$ and

$$
\frac{\lambda_{k}}{\gamma}<s<\frac{\lambda_{k}}{\delta} \text { or } \frac{\lambda_{k}}{\delta}<s<\frac{\lambda_{k}}{\gamma}
$$

for some $k \in \mathbb{Z}$. Then problem has two solutions $w_{k,+}$ and $w_{k,-}$ such that $w_{k,+} \in S_{k}^{+}$and $w_{k,-} \in S_{k}^{-}$.

Proof. By the first relation of (1.5) we can rewrite (1.1)-(1.3) it following form

$$
\left\{\begin{array}{l}
(\ell w)(x)=\operatorname{s\gamma w}(x)+\operatorname{sh}(w(x)), x \in(0, \pi), \tag{3.2}\\
w \in(b . c .) .
\end{array}\right.
$$

Alongside problem (3.2) we shall consider the following nonlinear eigenvalue problem

$$
\left\{\begin{array}{l}
(\ell w)(x)=\lambda s \gamma w(x)+\operatorname{sh}(w(x)), x \in(0, \pi), \tag{3.3}\\
w \in(b . c .),
\end{array}\right.
$$

or, equivalently

$$
\left\{\begin{array}{l}
(\tilde{\ell} w)(x)=\lambda w(x)+\tilde{g}(x, w), x \in(0, \pi) \tag{3.4}\\
w \in(b . c .)
\end{array}\right.
$$

where

$$
\tilde{\ell} w=\frac{1}{s \gamma} \ell w \text { and } \tilde{g}(x, w)=\frac{1}{\gamma} h(w(x)) .
$$

In view of condition (1.5) we have

$$
\begin{equation*}
\tilde{g}(x, w)=o(|w|) \text { as }|w| \rightarrow 0, \tag{3.5}
\end{equation*}
$$

uniformly with respect to $x \in[0, \pi]$. Then, in view of (3.5), by Theorem 2.2 for each $k \in \mathbb{Z}$ and each ν, there exists a continuum \tilde{C}_{k}^{ν} of solutions of problem (3.4) (also problem (3.3)) which contains $\left(\tilde{\lambda}_{k}, \tilde{0}\right)$, is lies in $\left(\mathbb{R} \times S_{k}^{\nu}\right) \cup\left\{\left(\tilde{\lambda}_{k}, \tilde{0}\right)\right\}$ and is unbounded in $\mathbb{R} \times E$, where $\tilde{\lambda}_{k}$ is a k th eigenvalue of the linear problem

$$
\left\{\begin{array}{l}
(\tilde{\ell} w)(x)=\lambda w(x), x \in(0, \pi), \\
w \in(b . c .),
\end{array}\right.
$$

also of the linear problem

$$
\left\{\begin{array}{l}
(\ell w)(x)=\lambda s \gamma w(x), x \in(0, \pi), \tag{3.6}\\
w \in(b . c .) .
\end{array}\right.
$$

In view of (3.6) we get

$$
\tilde{\lambda}_{k}=\frac{\lambda_{k}}{s \gamma} .
$$

By the second representation of (1.4) problem (3.3) will take the form

$$
\left\{\begin{array}{l}
(\ell w)(x)-s(\delta-\gamma) w(x)=\lambda s \gamma w(x)+\operatorname{s\hbar }(w(x)), x \in(0, \pi), \tag{3.6}\\
w \in(b . c .),
\end{array}\right.
$$

or, equivalently

$$
\left\{\begin{array}{l}
(\hat{\ell} w)(x)=\lambda w(x)+\hat{g}(x, w), x \in(0, \pi) \tag{3.7}\\
w \in(b . c .)
\end{array}\right.
$$

where

$$
\hat{\ell} w=\frac{1}{s \gamma} \ell w-\left(\frac{\delta}{\gamma}-1\right) w \text { and } \hat{g}(x, w)=\frac{1}{\gamma} h(w(x)) .
$$

In view of condition (1.6) for any bounded intervals $\Lambda \subset \mathbb{R}$

$$
\begin{equation*}
\hat{g}(x, w, \lambda)=o(|w|) \text { as }|w| \rightarrow+\infty \tag{3.8}
\end{equation*}
$$

uniformly with respect to $(x, \lambda) \in[0, \pi] \times \Lambda$. Then, by (3.8), it follows from Theorem 2.3 that for each $k \in \mathbb{Z}$ and each ν there exists a continua \hat{C}_{k}^{ν} of solutions of problem (3.7) (also of problems (3.7) and (3.2)) which contains ($\hat{\lambda}_{k}, \infty$) and has the following properties:
(i) there exists a neighborhood \hat{V}_{k} of $\left(\hat{\lambda}_{k}, \infty\right)$ in $\mathbb{R} \times E$ such that $\hat{V}_{k} \cap \hat{C}_{k}^{\nu} \subset \mathbb{R} \times S_{k}^{\nu}$;
(ii) either \hat{C}_{k}^{ν} meets $\left(\hat{\lambda}_{k}^{\prime}, \infty\right)$ with respect to the set $\mathbb{R} \times S_{k^{\prime}}^{\nu^{\prime}}$ for some $\left(k^{\prime}, \nu^{\prime}\right) \neq(k, \nu)$, or \hat{C}_{k}^{ν} meets $(\lambda, \tilde{0})$ for some $\lambda \in \mathbb{R}$, or \hat{C}_{k}^{ν} has an unbounded projection onto $\mathbb{R} \times\{\tilde{0}\}$, where $\hat{\lambda}_{k}$ is a k th eigenvalue of the linear problem

$$
\left\{\begin{array}{l}
(\hat{\ell} w)(x)=\lambda w(x), x \in(0, \pi), \\
w \in(b . c .),
\end{array}\right.
$$

also of the linear problem

$$
\left\{\begin{array}{l}
(\ell w)(x)=s(\lambda \gamma+\delta-\gamma) w(x)+\operatorname{s\hbar }(w(x)), x \in(0, \pi), \tag{3.9}\\
w \in(b . c .) .
\end{array}\right.
$$

By (3.9) we get

$$
\hat{\lambda}_{k}=\frac{\lambda_{k}}{s \gamma}-\left(\frac{\delta}{\gamma}-1\right)
$$

Since conditions (1.5) and (1.6) are satisfied simultaneously, it follows from the proof of the first part of [13, Theorem 3.3] that $\hat{C}_{k}^{\nu} \subset \mathbb{R} \times S_{k}^{\nu}$, and consequently, the first alternative of property (ii) of \hat{C}_{k}^{ν} cannot hold, i.e., \hat{C}_{k}^{ν} cannot meets $\left(\lambda_{k}^{\prime}, \infty\right)$ for any $k^{\prime} \neq k$. Then either \hat{C}_{k}^{ν} meets $(\lambda, 0)$ for some $\lambda \in \mathbb{R}$, or the projection \hat{C}_{k}^{ν} onto $\mathbb{R} \times\{\tilde{0}\}$ is unbounded.

Let \hat{C}_{k}^{ν} meets $(\lambda, \tilde{0})$ for some $\lambda \in \mathbb{R}$. Then, using [12, Lemma 1.24], we can show that $\lambda=\tilde{\lambda}_{k}$. Moreover, if \tilde{C}_{k}^{ν} meets (λ, ∞) for some $\lambda \in \mathbb{R}$, then from property (i) of \hat{C}_{k}^{ν} it follows that $\lambda=\hat{\lambda}_{k}$.

If the projection \hat{C}_{k}^{ν} onto $\mathbb{R} \times\{\tilde{0}\}$ is unbounded, then there exists $\left\{\left(\mu_{n}, z_{n}\right)\right\}_{n=1}^{\infty} \subset$ $\left(\hat{C}_{k}^{\nu} \backslash\left\{\left(\hat{\lambda}_{k}, \infty\right)\right\}\right) \subset \mathbb{R} \times S_{k}^{\nu}\left(z_{n}=\binom{z_{1 n}}{z_{2 n}}\right)$ such that either

$$
\lim _{n \rightarrow \infty} \mu_{n} \rightarrow+\infty \text { or } \lim _{n \rightarrow \infty} \mu_{n} \rightarrow-\infty
$$

We introduce the notations:

$$
\begin{align*}
& \varphi_{n, 1}(x)=\frac{\hbar_{1}\left(z_{n}(x)\right) z_{n, 1}(x)}{z_{n, 1}^{2}(x)+z_{n, 2}^{2}(x)}, \psi_{n, 1}(x)=\frac{\hbar_{1}\left(z_{n}(x)\right) z_{n, 2}(x)}{z_{n, 2}^{2}(x)+z_{n, 2}^{2}(x)} \\
& \varphi_{n, 2}(x)=\frac{\hbar_{2}\left(z_{n}(x)\right) z_{n, 1}(x)}{z_{n, 1}^{2}(x)+z_{n, 2}^{2}(x)}, \psi_{n, 2}(x)=\frac{\hbar_{2}\left(z_{n}(x)\right) z_{n, 1}(x)}{z_{n, 1}^{2}(x)+z_{n, 2}^{2}(x)} . \tag{3.10}
\end{align*}
$$

Let $\epsilon_{0}>0$ be a fixed small number. Then, by conditions (1.5) and (1.6), there exist a small $\rho_{0}>0$ and a large $\varrho_{0}>0$ such that

$$
\begin{align*}
& \frac{|h(w)|}{|w|}<\epsilon_{0} \text { for any } w \in S,|w|<\rho_{0}, \tag{3.11}\\
& \frac{|\hbar(w)|}{|w|}<\epsilon_{0} \text { for any } w \in S,|w|>\varrho_{0} . \tag{3.12}
\end{align*}
$$

Since $\hbar \in C\left(\mathbb{R}^{2} \times \mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ there exists $K_{0}>0$ such that

$$
\begin{equation*}
\frac{|\hbar(w)|}{|w|}<K_{0} \text { for any } w \in E, \rho_{0} \leq|w| \leq \varrho_{0} \tag{3.13}
\end{equation*}
$$

By (1.4) and (3.11) for any $w \in S$ such that $|w|<\rho_{0}$ we get

$$
\begin{equation*}
|\hbar(w)|=|(\gamma-\delta) w+h(w)| \leq\left(|\gamma-\delta|+\epsilon_{0}\right)|w| \tag{3.14}
\end{equation*}
$$

Thus, it follows from (3.12)-(3.14) that

$$
\begin{equation*}
|\hbar(w)| \leq M|w|, w \in S \tag{3.15}
\end{equation*}
$$

where

$$
M=\max \left\{K_{0},|\gamma-\delta|+\epsilon_{0}\right\}
$$

In view of (3.15), by (3.10) we get

$$
\begin{align*}
& \left|\varphi_{n, 1}(x)\right| \leq \frac{\left|\hbar_{1}\left(z_{n}(x)\right)\right|\left|z_{n, 1}(x)\right|}{z_{n, 1}^{2}(x)+z_{n, 2}^{2}(x)} \leq 2 M, \quad\left|\psi_{n, 1}(x)\right| \leq \frac{\left|\hbar_{1}\left(z_{n}(x)\right)\right|\left|z_{n, 2}(x)\right|}{z_{n, 1}^{2}(x)+z_{n, 2}^{2}(x)} \leq 2 M \\
& \left|\varphi_{n, 2}(x)\right| \leq \frac{\left|\hbar_{2}\left(z_{n}(x)\right)\right|\left|z_{n, 1}(x)\right|}{z_{n, 1}^{2}(x)+z_{n, 2}^{2}(x)} \leq 2 M, \quad\left|\psi_{n, 2}(x)\right| \leq \frac{\left|\hbar_{2}\left(z_{n}(x)\right)\right|\left|z_{n, 2}(x)\right|}{z_{n, 1}^{2}(x)+z_{, 2}^{2}(x)} \leq 2 M \tag{3.16}
\end{align*}
$$

By (3.10) it follows from (3.9) that $\left(\mu_{n}, z_{n}\right), n \in \mathbb{N}$, solves the linear problem

$$
\left\{\begin{array}{l}
(\ell w)(x)-s P_{n}(x) w(x)=s(\lambda \gamma+\delta-\gamma) w(x), x \in(0, \pi) \tag{3.17}\\
w \in(b . c .)
\end{array}\right.
$$

where

$$
P_{n}(x)=\left(\begin{array}{cc}
\varphi_{n, 1}(x) & \psi_{n, 1}(x) \\
\varphi_{n, 2}(x) & \psi_{n, 2}(x)
\end{array}\right)
$$

By [3, theorem 2.4] we have

$$
\begin{gather*}
\theta^{\prime}\left(z_{n}, x\right)= \\
s\left(\mu_{n} \gamma+\delta-\gamma\right)+p(x) \cos ^{2} \theta\left(z_{n}, x\right)+r(x) \sin ^{2} \theta\left(z_{n}, x\right)+s \varphi_{n, 1}(x) \cos ^{2} \theta\left(z_{n}, x\right)+ \\
s \psi_{n, 2}(x) \sin ^{2} \theta\left(z_{n}, x\right)+\frac{1}{2} s\left\{\psi_{n, 1}(x)+\varphi_{n, 2}(x)\right\} \sin 2 \theta\left(z_{n}, x\right) \tag{3.18}
\end{gather*}
$$

Integrating (3.18) from 0 to π and using (2.5), (2.6) we get

$$
\begin{gather*}
s\left(\mu_{n} \gamma+\delta-\gamma\right)=k \pi+\alpha-\beta-\int_{0}^{\pi}\left\{p(x) \cos ^{2} \theta\left(z_{n}, x\right)+r(x) \sin ^{2} \theta\left(z_{n}, x\right)\right\} d x- \\
\left\{\begin{array}{l}
\int_{0}^{\pi}\left\{\delta+\varphi_{n, 1}(x) \cos ^{2} \theta\left(z_{n}, x\right)+\psi_{n, 2}(x) \sin ^{2} \theta\left(z_{n}, x\right)\right\} d x+ \\
\left.\frac{1}{2} \int_{0}^{\pi}\left\{\psi_{n, 1}(x)+\varphi_{n, 2}(x)\right\} \sin 2 \theta\left(z_{n}, x\right) d x\right\}
\end{array}\right. \tag{3.19}
\end{gather*}
$$

The left side of (3.19) for sufficiently large n takes on sufficiently large values in absolute value, while by $p, r \in C([0, \pi] ; \mathbb{R})$ and (3.16) the right side remains bounded, which gives a contradiction. Therefore, the projection of \hat{C}_{k}^{ν} onto $\mathbb{R} \times\{\tilde{0}\}$ is bounded, and consequently, \hat{C}_{k}^{ν} meets $\left(\tilde{\lambda}_{k}, 0\right)$. Similarly, we can show that the projection of \tilde{C}_{k}^{ν} onto $\mathbb{R} \times\{\tilde{0}\}$ is also bounded, which implies that \tilde{C}_{k}^{ν} meets $\left(\hat{\lambda}_{k}, \infty\right)$. Therefore, for $k \in \mathbb{Z}$ and each ν we have

$$
\begin{equation*}
\tilde{C}_{k}^{\nu}=\hat{C}_{k}^{\nu} \tag{3.20}
\end{equation*}
$$

From (3.2) it is clear that the solution to this problem (λ, w) with $\lambda=1$ is also solution to problem (1.1)-(1.3). Since \tilde{C}_{k}^{ν} is connected, it follows that for the existence of a solution $w \in E$ of problem (1.1)-(1.3) contained in S_{k}^{ν} for some $k \in \mathbb{Z}$, by (3.20), it is sufficient that on the real axis \mathbb{R} the point $\frac{\lambda_{k}}{s \gamma}$ lies to the left of 1 and the point $\frac{\lambda_{k}}{s \gamma}-\left(\frac{\delta}{\gamma}-1\right)$ lies to the right of 1 , or the point $\frac{\lambda_{k}}{s \gamma}-\left(\frac{\delta}{\gamma}-1\right)$ lies to the right of 1 , and the point $\frac{\lambda_{k}}{s \gamma}$ lies to the left of 1 .

If $\lambda_{k}>0, s>0$ and $\frac{\lambda_{k}}{\gamma}<s<\frac{\lambda_{k}}{\delta}$, then we have

$$
\frac{\lambda_{k}}{s \gamma}<1 \text { and } 1<\frac{\lambda_{k}}{s \delta}
$$

By conditions $s>0, \delta>0$ and $\gamma>0$ we get

$$
\begin{gathered}
1<\frac{\lambda_{k}}{s \delta} \Longrightarrow s \delta<\lambda_{k} \Longrightarrow s \frac{\delta}{\gamma}<\frac{\lambda_{k}}{\gamma} \Longrightarrow s\left(1+\frac{\delta}{\gamma}-1\right)<\frac{\lambda_{k}}{\gamma} \Longrightarrow \\
s<\frac{\lambda_{k}}{\gamma}-s\left(\frac{\delta}{\gamma}-1\right) \Longrightarrow 1<\frac{\lambda_{k}}{s \gamma}-\left(\frac{\delta}{\gamma}-1\right)
\end{gathered}
$$

Therefore, we have the following relation

$$
\frac{\lambda_{k}}{s \gamma}<1<\frac{\lambda_{k}}{s \gamma}-\left(\frac{\delta}{\gamma}-1\right) .
$$

Other cases are considered similarly. The proof of this theorem is complete.

References

[1] Z.S. Aliyev ZS, N.A. Neymatov, H.Sh. Rzayeva, Unilateral global bifurcation from infinity in nonlinearizable one-dimensional Dirac problems. Int. J. Bifur. Chaos. 2021; 31(1): 1-10.
[2] Z.S. Aliyev, H.Sh. Rzayeva, Oscillation properties for the equation of the relativistic quantum theory, Appl. Math. Comput. 271 (2015), 308-316.
[3] Z.S. Aliyev, H.Sh. Rzayeva, Global bifurcation for nonlinear Dirac problems, Electron. J. Qual. Theory Differ. Equ. (46) (2016), 1-14.
[4] F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, London, 1964.
[5] G. Dai, Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable, Elec. J. Qual. Theory of Diff. Equat. (65) (2013), 1-7.
[6] L.H. Erbe, H.Y. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120(3) (1994), 743-748.
[7] J. Henderson, H.Y. Wang, Positive solutions for nonlinear eigenvalu eproblems, J.Math.Anal.Appl. 208 (1997), 252-259.
[8] R. Ma and G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville problem with a nonsmooth nonlinearity, J. Funct. Anal. 265 (2013), 1443-1459.
[9] R. Ma, B.Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal. 59 (2004), 707-718.
[10] R. Ma, B. Thompson, Multiplicity results for second-order two-point boundary value problems with nonlinearities across several eigenvalues, Appl. Math. Lett. 18(5) (2005), 587-595.
[11] Y. Naito, S. Tanaka, On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations, Nonlinear Anal. 56(4) (2004), 919-935
[12] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7(3) (1971), 487-513.
[13] B.P. Rynne, Bifurcation from zero or infinity in Sturm-Liouville problems which are not linearizable, J. Math. Anal. Appl. 228(1) (1998), 141-156.
[14] B. Thaller, The Dirac Equation, Springer, Berlin, 1992.

[^0]Received 01 October 2023
Accepted 21 November 2023

[^0]: Humay Sh. Rzayyeva
 Institute of Mathematics and Mechanics of Ministry of Science
 and Education of Azerbaijan, Baku, Azerbaijan
 E-mail: humay_rzayeva@bk.ru

