Caspian Journal of Applied Mathematics, Ecology and Economics
V. 11, No 2, 2028, December
ISSN  1560-4055

Nodal Solutions of Some Nonlinear Dirac Problems

Humay Sh. Rzayeva

Abstract. In this paper we consider the nonlinear boundary value problem for the one-dimensional
Dirac operator. We show the existence of pair of nodal solutions of this problem. The proof of our
main result based on a method on bifurcation from zero and infinity.

Key Words and Phrases: nonlinear Dirac equation, eigenvalue, eigenvector-function, bifurcation
from zero, bifurcation from infinity, nodal solution

2010 Mathematics Subject Classifications: 34A30, 34B15, 34C23, 34K29, 47J10, 47J15

1. Introduction

We consider the following nonlinear Dirac equation
(fw)(x) = Bw'(z) — P(z)w(z) = sf(w(x)), 0 <z <, (1.1)
with the boundary conditions
Ui(w) := (sina, cosa) w(0) = v(0)cosa + u (0)sina =0, (1.2)

Uz (w) := (sin 3, cos B)w(m) = v(mw) cos 5+ u () sin B = 0, (1.3)

pe (00 pe= (500 ) = ()

A € C is an eigenvalue parameter, p (z), r(x) € C([0,7];R), a, 3, are real constants such

where

that 0 < «a, 8 < 7. Here s is a nonzero real number and the function f = < h > €

f2
C (R2 x R RQ) satisfies the following condition:

f(w) =~yw + h(w) and f(w) = dw + h(w), (1.4)

where 7, 0 (v # ) are positive constants and
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h(w) = < e ) — o(juw]) as Juw] - 0, (15)

h(w) = < Z;EZ% ) — offw]) as [w] - oo (1.6)

(here by | - | we denote the norm in R?).

The Dirac equations describing spin-1/2 particles, such as electrons and positrons,
play the important role in both physics and mathematics. The nonlinear Dirac equations
describes the self-action in quantum electrodynamics and used as an effective theory in
atomic and gravitational physics (see [14]).

The existence of nodal solutions of boundary value problems for ordinary differential
operators of second and fourth orders was study in [5-11]. In these papers, the authors,
using the bifurcation technique, show the existence of solutions of problems they consider,
contained in classes of functions with a fixed usual oscillation count.

In this paper, we will show the existence of nodal solutions of problem (1.1)-(1.3) using
global bifurcation results from zero and infinity that we previously obtained for nonlinear
Dirac eigenvalue problems.

2. Preliminary

Let (b.c.) be denote the set of vector-functions that satisfies the boundary conditions
(1.2) and (1.3).

We consider the following nonlinear eigenvalue problem

(fw)(x) = dw(z) + g(z, w(x), A), © € (0,7),
{ w € (b.c.). ! (2.1)

We will impose one or the other of the following conditions on the nonlinear term g(x, w, \) €
C([0, 7] x R? x R;R?):
gl w, ) = offw]) as [w] = 0, (2.2)
or
9w, w,\) = offw]) as [w] = + oo, (2.3)

uniformly with respect to (x,\) € [0, 7] x A, for any bounded interval A C R.
By conditions (2.2) and (2.3) the nonlinear problem (2.1) is linearizable both at zero
and at infinity, and the corresponding linear problem is

{ (lw)(z) = Mw(z), z € (0,7), (2.4)

w € (b.c.).
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Let E be the Banach space C ([0,7]; R?) N {w : U(w) = 0} with the norm ||w||p =
I%LX] lu(x)| + m[gx] |v(z)|. We denote by S a subset of E, which defined as follows:
TE €

) T T )

S={weFE: |ulx)+|v(z) >0, Vze[0,n]}.

IS

As in [2] (see also [4]), for each w = < ) € S we define a continuous function 6(w, x)

<

on [0, 7] by

tanf(w, x) = o) f(w,0) = —a. (2.5)

Theorem 2.1 [2, Theorem 3.1]. The eigenvalues A\, k € Z, of the problem (2.4) are
real and simple, and can be numbered in ascending order on the real azxis

<A< L KA < <A< L <A<,

so that for the eigenvector-function wy(x), k € Z, corresponding to the eigenvalue Ay, the
angular function O(wy,x) at © = w satisfy the condition

O(wg, ) = —p + k. (2.6)

ug(z)
ur(z)
following oscillation properties: if k > 0 and k = 0, > [ (except the cases a = =0
and o = 8 =7/2), then

( s(up,) > _ ( k—1 +x(]?:1wizggiax(w/2 —B) ) | .

The eigenvector-functions wy(z) = ( ) have, with a suitable interpretation, the

and if k <0 and k =0, a < 3, then

< s(up) ) _ < k| —1 +>|<l(;‘r/_21—i);grn>é(ﬁ—7r/2> ) ’ (2.8)

where s(g) the number of zeros of the function g € C([0,n]; R) in the interval (0,7) and

R LR R
VIV, ifeso

Moreover, the functions ug(x) and vi(x) have only nodal zeros in the interval (0, ).

For each k € Z and each v, let S}/ denote the set of vector functions w € S with the
following properties:

(i) O(w, m) = =B + km;

(ii) if k > 0 or k = 0, > (3 (except the cases « = f =0 and o = § = 7/2), then for
fixed w, as x increases from 0 to 7, the function 6 cannot tend to a multiple of 7/2 from
above, and as = decreases, the function # cannot tend to a multiple of 7/2 from below; if
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k< 0or k=0,a < g, then for fixed w, as = increases, the function # cannot tend to a
multiple of 7/2 from below, and as = decreases, the function # cannot tend to a multiple
of m/2 from above;

(iii) the function vu(x) is positive in a deleted neighborhood of z = 0.

Remark 2.1. By (2.5), Theorem 2.1 and [2, Remark 2.1] we have wy, € S, = S}, USF,
in other words the sets S, S,:r and S}, are nonempty. From the definition of the sets S,
S,": and Sy it can be seen that they are disjoint and open in F.

Now for problem (1.1)-(1.3) we can give global bifurcation results obtained earlier in
1, 3].

Theorem 2.2 [3, Theorem 3.1]. Let condition (2.2) holds. Then for each k € Z and
each v, there exists a continuum C} of solutions of problem (2.1) which contains (Ak, O),
is lies in (R x Sy)U {(\,0)} and is unbounded in R x E.

Theorem 2.3 [1, Theorem 1]. Let condition (2.3) holds. Then for each k € Z and
each v there exists a continua Dj, of solutions of problem (2.1) which contains (A, o0)
and has the following properties:

(i) there exists a neighborhood Vi, of (A, 00) in R x E such that Vi, " D} C R x SY;

(ii) either DY meets (N}, 00) with respect to the set R x S¥, for some (K', V') # (k,v),
or D} meets (A, 6) for some A € R, or Df has an unbounded projection onto R x {6}

3. Existence of nodal solutions to the nonlinear problem (1.1)-(1.3)

In this section, for each k € Z and each v, an interval is determined for s in which
there are solutions to the problem (1.1)-(1.3) contained in the set S}.

Theorem 1. Let \; # 0 and

A
v 0 0 Y

for some k € Z. Then problem has two solutions wy, + and wy, — such that wy, 4 € S,j and
Wk, — € S];

Proof. By the first relation of (1.5) we can rewrite (1.1)-(1.3) it following form

(lw)(x) = syw(x) + sh(w(x)), z € (0,7),
{ w € (b.c.). ! (3.2)

Alongside problem (3.2) we shall consider the following nonlinear eigenvalue problem

(w)(x) = Asyw(x) + sh(w(x)), € (0,7),
{ w € (b.c.), ! (3.3)
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or, equivalently 3
{ (tw)(z) = Aw(z) + §(z,w), z € (0,7),
w € (b.c.),

where

- 1 1
lw=—/w and g(x,w) = — h(w(x)).
- (@) = = h(u(z)

In view of condition (1.5) we have

g(z,w) =o(|w]) as |w| — 0,

37

(3.5)

uniformly with respect to « € [0, w]. Then, in view of (3.5), by Theorem 2.2 for each k € Z
and each v, there exists a continuum C} of solutions of problem (3.4) (also problem (3.3))

which contains :\k,f) , is lies in (R x S¥) U 5\k,(~) and is unbounded in R x E, where
k

i is a kth eigenvalue of the linear problem

{ (fw)(z) = Mw(z), z € (0,7),

w € (b.c.),

also of the linear problem

{ (lw)(x) = Asyw(x), x € (0,7),
w € (b.c.).

In view of (3.6) we get
N A
A =28,
5y

By the second representation of (1.4) problem (3.3) will take the form

{ (fw)(z) — s(6 —y)w(x) = Asyw(x) + sh(w(z)), z € (0,7),
w € (b.c.),

or, equivalently R
{ (lw)(z) = Mw(z) + §(z,w), z € (0,7),
w € (b.c.),

where

fw = L — <fi - 1) w and §(z,w) = ih(w(m)).

In view of condition (1.6) for any bounded intervals A C R

9(z,w, A) = o(|w]) as [w| — + o0,

(3.8)

uniformly with respect to (x,\) € [0, 7] x A. Then, by (3.8), it follows from Theorem 2.3
that for each k € Z and each v there exists a continua C} of solutions of problem (3.7)

(also of problems (3.7) and (3.2)) which contains (A, 00) and has the following properties:
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(i) there exists a neighborhood V4 of (A, c0) in R x E such that VN C’,’; C R xSy,

gii) either CA’,ZNmeets (\y., 00) with respect to the set R x Sy, for some (k', 1) # (k:,z/),
or C} meets (A,0) for some A € R, or €}/ has an unbounded projection onto R x {O},
where A is a kth eigenvalue of the linear problem

{ (lw)(z) = Mw(z), z € (0,7),

w € (b.c.),

also of the linear problem

{ (tw)(z) = s(\y + 0 = y)w(z) + sh(w(x)), x € (0, ),

w € (b.c.).
A = Mo <5 - 1) .
sy Y

Since conditions (1.5) and (1.6) are satisfied simultaneously, it follows from the proof of
the first part of [13, Theorem 3.3] that C}/ C R x .S}, and consequently, the first alternative
of property (ii) of C’IZ cannot hold, i.e., C’,Z cannot meets (A}, 00) for any k' # k. Then
either CA'}J meets (A, 0) for some A € R, or the projection C’Z onto R x {6} is unbounded.

Let C’,’; meets (), 0) for some A € R. Then, using [12, Lemma 1.24], we can show that
A = \x. Moreover, if C¥ meets (\,00) for some A € R, then from property (i) of C’,’; it
follows that A = ).

If the projection C’,Z onto R x {0} is unbounded, then there exists {(fin,21)}5%; C

(EN (G 00)}) € R x 87 ( _ ( )) stich that either

By (3.9) we get

22n
lim pp, = + oo or lim p, = — oo.
n—oo n—oo

We introduce the notations:
_ hi(zn(®@)zna(z) _ hi(zn(z))zn,2(®)
(Pn,l(x) o 25,1($)+z3,2($)’ wn,l(x) - zi,z(x)""zi,z(fﬂ)
(3.10)

o (zn(2))2n1(x ha(zn(x))zn1(x
onal@) = FETEE, vnale) = HTRE

Let €9 > 0 be a fixed small number. Then, by conditions (1.5) and (1.6), there exist a
small pg > 0 and a large gp > 0 such that

h
| |S}T>l < €p for any w € S, |w| < po, (3.11)
h
[AiCw) < €p for any w € S, |w| > go. (3.12)

|wl
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Since h € C (R2 x R?; ]RQ) there exists Ky > 0 such that

[(w)]
|w]

By (1.4) and (3.11) for any w € S such that |w| < pg we get

< Ky for any w € E, py < |w| < gp. (3.13)

[(w)] = (v = 0)w + h(w)] < (|7 = 6] + o) |w]. (3.14)
Thus, it follows from (3.12)-(3.14) that
|h(w)| < M|w|, w € S, (3.15)

where
M = max {Ko, |7 — ] + o}.

In view of (3.15), by (3.10) we get

(o1 (@)] < e lnal < o,y (@) < Lafenellinall < 5
n,1 ", s

(3.16)
st < B <t o) < B <o
By (3.10) it follows from (3.9) that (un,2n), n € N, solves the linear problem
{ () ~aP(ahu(e) =001 +6= 7)ot 2. (0.7 s

where

— Qon,l(x) Q;Z)
Pn(x) N < Son,Q(fB) wn

3
v =
—~
8 8
~— —
N——

By [3, theorem 2.4] we have

0 (zn, ) =
s(pny + 8 — ) + p(x) cos? 0(zn, ¥) + r(x) sin? O(2,, ) + sn1(z) cos? O(zn, ) +

st 2(x) sin? 0z, ) + %s {n,1(x) + on2(x)}sin20(zy, x).

(3.18)
Integrating (3.18) from 0 to 7w and using (2.5), (2.6) we get
sy +0—7) =kr+a—B— [{p(x)cos?0(zy, ) + r(z)sin (2, ) } do—
0
{f {6+ on1(z) cos? 0(zn, ) + Y 2(z) sin? 0(z,, ) } do + (3.19)
0

3 O}{T/Jn 1(z) + @n2(z)} sin 26(zy,, g;)d;c} .
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The left side of (3.19) for sufficiently large n takes on sufficiently large values in absolute
value, while by p, r € C([0, 7]; R) and (3.16) the right side remains bounded, which gives a
contradiction. Therefore, the projection of C” onto R x {0} is bounded, and consequently,

C” meets (/\k, 0). Similarly, we can show that the projection of C” onto R x {O} is also
bounded, which implies that C~’Z meets (S\k, o0). Therefore, for k € Z and each v we have

oy =cCv. (3.20)

From (3.2) it is clear that the solution to this problem (A, w) with A = 1 is also solution
to problem (1.1)-(1.3). Since C} is connected, it follows that for the existence of a solution
w € E of problem (1.1)-(1.3) contained in SY for some k € Z, by (3. 20) it is sufficient

that on the real axis R the pomt hes to the left of 1 and the pomt <é — 1) lies

to the right of 1, or the point H — (7 — 1) lies to the right of 1, and the pomt hes to

5
the left of 1.
If)\k>0,3>0and/\7’“<s<%,thenwehave

)\f<1ad1<)\f
sy s6

By conditions s > 0, > 0 and v > 0 we get

1< :>35<>\k:>37<%:>s<1+;—1)<—:>

A o9 _ A (6 _
s<7 s(,y 1):>1<87 (7 1).

Therefore, we have the following relation

A A 0

Ch 1< ZE ( - 1> .
87 s Y

Other cases are considered similarly. The proof of this theorem is complete.
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