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On basicity of eigenfunctions of one spectral problem
with the discontinuity point in Morrey-Lebesgue spaces

T.B. Gasymov*, A.Q. Akhmedov, R.J. Taghiyeva

Abstract. In this paper is studied the spectral problem for a discontinuous second order differ-
ential operator with a spectral parameter in transmission conditions, that arises by solving the
problem on vibrations of a loaded string with the free ends. An abstract theorem on the stability
of the basis properties of multiple systems in a Banach space with respect to certain transforma-
tions is proved. This fact is used in the proof of theorems on the basicity of eigenfunctions of a
discontinuous differential operator in Morrey type spaces.
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1. Introduction

We consider a model eigenvalue problem for the discontinuous second order differential
operator

−y
′′
(x) = λy (x) , x ∈

(
0,

1

3

)⋃ (
1

3
, 1

)
(1)

with boundary conditions
y′(0) = y′(1) = 0 (2)

and with the following discontinuity conditions

y(13 − 0) = y(13 + 0),
y′(13 − 0)− y′(13 + 0) = λmy(13),

}
(3)

where λ is the spectral parameter, m is a non-zero complex number. Such spectral prob-
lems arise when the problem of vibrations of a loaded string with free ends is solved by
applying the Fourier method [1-3]. The spectral problems with a discontinuity conditions
inside the interval play an important role in mathematics, mechanics, physics and other
fields of science. The applications of boundary value problems with discontinuity condi-
tions inside the interval are connected with discontinuous material properties. Nowadays
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there is a number of papers dedicated to spectral problems for the ordinary differential
operator with eigenparameter dependent boundary conditions. There are many papers
concerning problems with discontinuity conditions. One can find the similar works in
[4-7].

One of the commonly used methods for solving partial differential equations is the
method of separation of variables. This method yields the appropriate spectral problem
and in order to justify the method, it is very important the question of the expansion of
functions of certain class on eigen and association functions of the discrete differential op-
erators. The study of spectral properties of some discrete differential operators motivates
the development of new methods for constructing basis. In this context, much attention
has been given to the study of basis properties (completeness, minimality and basicity)
of systems of special functions, which are frequently eigen and associated functions of
differential operators. Additionally, various methods for examining these properties were
proposed. Example, one of the works is [8]. Then various perturbation methods are
applied. This direction has been well developed (see [9]). In the case of discontinuous
differential operators, there appear systems of eigenfunctions whose basicity cannot be
investigated by previously known methods. In the work [10,11] is considered an abstract
approach to the problem described above and is proposed a new method for construct-
ing bases, which has wide applications in the spectral theory of discontinuous differential
operators.

In the paper [12] the problem of oscillation of a loaded string is investigated in the
case when the load is placed in the middle of the string and it is shown that an abstract
method proposed in [10, 11] can be used in non-standard spaces such as a Morrey type
space. The concept of Morrey space was introduced by C. Morrey in 1938. Since then,
various problems related to this space have been intensively studied. Playing an important
role in the qualitative theory of elliptic differential equations (see, for example, [13,14]),
this space also provides a large class of examples of mild solutions to the Navier-Stokes
system [15]. In the context of fluid dynamics, Morrey spaces have been used to model
fluid flow when vorticity is a singular measure supported on certain sets in Rn [16]. More
details about Morrey spaces can be found in [17,18]. Morrey type space is introduced in
[17] (see e.g. [18]). In [19] the basicity of the exponential system, and in [20-23] - the
perturbed exponential system in Morrey type spaces are proved. The present paper is
continuity of [24] and [25].

2. Necessary information and preliminary results

For obtaining the main results we need some notions and facts from the theory of basis
in a Banach space.

Definition 2.1.Let X- be a Banach space. If there exists a sequence of indexes, such
that {nk} ⊂ N , nk < nk+1, n0 = 0, and any vector x ∈ X is uniquely represented in the
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form

x =
∞∑
k=0

nk+1∑
i=nk+1

ciui.

then the system {un}n∈N ∈ X is called a basis with parentheses in X .

For nk = k the system {un}n∈N forms a usual basis for X.

We need the following easily proved statements.

Statement 2.1. Let the system {un}n∈N forms a basis with parentheses for a Banach
space X. If the sequence {nk+1 − nk}k∈N is bounded and the condition

sup
n

∥un∥ ∥ϑn∥ < ∞,

holds, where {ϑn}n∈N - is a biorthogonal system, then the system {un}n∈N forms a usual
basis for X.

Definition 2.2.The basis {un}n∈N of Banach space X is called a p-basis, if for any
x∈ X the condition ( ∞∑

n=1

|⟨x, ϑn⟩|p
) 1

p

≤ M ∥x∥ ,

holds, where {ϑn}n∈N - is a biorthogonal system to {un}n∈N .

Definition 2.3. The sequences {un}n∈N and {ϕn}n∈N of Banach space X are called
a p- close, if the following condition holds:

∞∑
n=1

∥un − ϕn∥p < ∞.

We will also use the following results from [8] (see also [24]).

Theorem 2.1. Let {xn}n∈N forms a q-basis for a Banach space X, and the sys-
tem {yn}n∈N is p-close to {xn}n∈N , where 1

p + 1
q = 1.Then the following properties are

equivalent:

a) {yn}n∈N - is complete in X;

b) {yn}n∈N - is minimal in X;

c) {yn}n∈N - forms an isomorphic basis to {xn}n∈N for X.

Let X1 = X ⊕ Cm and {ûn}n∈N ⊂ X1 be some minimal system and
{
ϑ̂n

}
n∈N

⊂
X∗

1 = X∗ ⊕ Cm be its biorthogonal system:

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} some set of m natural numbers. Suppose

δ = det ∥βnij∥ i,j=1,m.

In [27] (see also [28]) has been proved the following theorem :
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Theorem 2.2. Let the system {ûn}n∈N forms a basis for X1.In order to the system
{un}n∈NJ

, where NJ = N\J forms a basis for X it is necessary and sufficient that the
condition δ ̸= 0 be satisfied. In this case the biorthogonal system to {un}n∈NJ

is defined
by

ϑ∗
n =

1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 . . . ϑnm

βn1 βn11 . . . βnm1

. . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
In particular, if X is a Hilbert space and the system {un}n∈N - forms a Riesz basis for
X1, then under the condition δ ̸= 0, the system {un}n∈NJ

also forms a Riesz basis for X.
For δ = 0 the system {un}n∈NJ

is not complete and is not minimal in X.
Let X be a Banach space and the system {ukn}k=1,m;n∈N is any system in X. Let

a
(n)
ik , i, k = 1,m, n ∈ N, any complex numbers. Let,

An =
(
a
(n)
ik

)
i,k=1,m

and ∆n = detAn , n ∈ N.

Consider the following system in space X :

ûkn =
m∑
i=1

a
(n)
ik uin, k = 1,m;n ∈ N. (4)

Following theorems have been proved in [8] (also [11])
Theorem 2.3. If the system {ukn}k=1,m;n∈N forms basis for X and

∆n ̸= 0,∀n ∈ N (5)

then the system {ûkn}k=1,m;n∈N forms basis with parentheses for X. If in addition the
following conditions

sup
n

{
∥An∥ ,

∥∥A−1
n

∥∥} < ∞, sup
n

{∥ukn∥ , ∥ϑkn∥} < ∞, (6)

hold, where {ϑkn}k=1,m;n∈N ⊂ X∗- is biorthogonal to {ukn}k=1,m;n∈N , then the system
{ûkn}k=1,m;n∈N forms a usual basis for X.

We will also need some facts about the theory of Morrey-type spaces. Let Γ be some
rectifiable Jordan curve on the complex plane C. By |M |Γ we denote the linear Lebesgue
measure of the set M ⊂ Γ. By the Morrey-Lebesgue space Lp,α (Γ) , 0 ≤ α ≤ 1 , p ≥ 1, we
mean a normed space of all functions f (·) measurable on Γ equipped with a finite norm
∥f∥Lp,α(Γ):

∥f∥Lp,α(Γ) = sup
B

(∣∣∣B⋂Γ
∣∣∣α−1

Γ

∫
B

⋂
Γ
|f (ξ)|p |dξ|

) 1
p

< +∞.

Lp,α (Γ) is a Banach space and Lp,1 (Γ) = Lp (Γ) , Lp,0 (Γ) = L∞ (Γ) . The embedding
Lp,α1 (Γ) ⊂ Lp,α2 (Γ) is valid for 0 ≤ α1 ≤ α2 ≤ 1 . Thus Lp,α (Γ) ⊂ Lp (Γ) , ∀α ∈
[0, 1] , ∀p ≥ 1 . The case of Γ ≡ [a, b] will be denoted by Lp,α (a, b).
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Denote by L̃p,α (a, b) linear subspace of Lp,α (a, b) consisting of functions whose shifts
are continuous in Lp,α (a, b), i.e. ∥f (· + δ)− f ( · )∥Lp,α(a,b) → 0 as δ → 0.The closure of

L̃p,α(a, b) in Lp,α (a, b) will be denoted by Mp,α(a, b) . In [19,21] the following theorem is
proved.

Theorem 2.4.The exponential system
{
ei nt

}
n∈Z is the bases in Mp,α (−π, π) , 1 <

p < +∞, 0 < α ≤ 1.
Using this theorem, it is easy to obtain the following
Statement 2.2. The trigonometric systems {cosnx}∞n=0 forms a basis for Mp,a (0, p) , 1 <

p < +∞, 0 < a ≤ 1.

3. Main results

In [24] it was proved that the eigenvalues of the problem (1)-(3) are asymptotically
simple and consist of λ0 = 0 and two series: λi,n = ρ2i,n, i = 1, 2;n ∈ Z+, where Z+ =
{0} ∪N and the numbers ρi,n hold the following asymptotically formulas:

ρ1,n = 3πn+ 3π
2 +O

(
1
n

)
ρ2,n = 3πn

2 + 3π
4 +O

(
1
n

)
.

(7)

Also the eigenfunctions y0 (x) and yi,n (x) of the problem (1)-(3) corresponding to the
eigenvalues λi,n = (ρ1,n)

2, i = 1, 2;n ∈ Z+ are the following form:

y0 (x) ≡ 1, yi,n (x) =

 cos
2ρi,n
3 cosρi,n x, x ∈

[
0, 13
]
,

cos
ρi,n
3 cosρi,n (1− x) , x ∈

[
1
3 , 1
]
,

i = 1, 2;n ∈ Z+. (8)

Now consider a problem on basicity of eigen and associated functions of the problem
(1)-(3) in spaces Lp(0, 1)⊕C and Lp(0, 1). Since the eigenvalues are asymptotically simple,
the problem can only have a finite number of associated functions. In paper [24] we were
constructed linearizing operator as following form. By W k

p

(
0, 13
)
⊕W k

p

(
1
3 , 1
)
we denoted

a space functions whose contractions on segments
[
0, 13
]
and

[
1
3 , 1
]
belong correspondingly

to Sobolev spaces W k
p

(
0, 13
)
and W k

p

(
1
3 , 1
)
. Let us define the operator L in Lp(0, 1) ⊕ C

as follows:

D (L) =

{
ŷ ∈ Lp(0, 1)⊕ C : ŷ =

(
y,my

(
1
3

))
, y ∈ W 2

p

(
0, 13
)
⊕W 2

p

(
1
3 , 1
)
,

y′(0) =y′(1) = 0, y
(
1
3 − 0

)
= y

(
1
3 + 0

)
,

}
and for ŷ ∈ D (L)

Lŷ = (−y′′; y′
(
1

3
− 0

)
− y′

(
1

3
+ 0

)
, ŷ ∈ D(L)).

Operator defined by these formula is a linear closed operator with dense definitional do-
main in Lp(0, 1) ⊕ C. Eigenvalues of the operator L and problem (1)-(3) coincide, and
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{ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ are eigenvectors of the operator L , where

ŷ0 = (1;m) , ŷi,n =

(
yi,n (x) ;my

(
1

3

))
, i = 1, 2;n ∈ Z+.

Theorem 3.1. The system {ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ of eigen and associated vectors of
the operator L, which linearized the problem (1)- (3) forms basis in Mp,a (0, 1)⊕ C, 1 <
p < ∞, 0 < a ≤ 1.

Proof. Considering (7) in (8), we will get the following functional system for the head
parts of the asymptotic formulas:

u1,n (x) =

{
− cos

(
3πn+ 3π

2

)
x , x ∈

[
0, 13
]
,

0, x ∈
[
1
3 , 1
]
,

u2,n (x) =

{
0, x ∈

[
0, 13
]
,

an cos
(
3πn
2 + 3π

4

)
(1− x) x ∈

[
1
3 , 1
]
,

(9)

where αn = cos
(
πn
2 + π

4

)
. If n = 4k and n = 4k + 3, αn = 1√

2
and n = 4k + 1 and

n = 4k + 2, αn = − 1√
2
. Then from the formulas (8) and (9) imply that, the following

asymptotic relations are true:{
y1,n (x) = u1,n (x) +O

(
1
n

)
y2,n (x) = u2,n (x) +O

(
1
n

)
.

(10)

Since the operator L has compact resolvent, the system {ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ of
eigenfunctions and associated vectors is minimal in Lp (0, 1)⊕ C. The conjugate system
{v̂0}∪ {v̂i,n}i=1,2;n∈Z+ is the eigenvectors and associated vectors of the conjugating oper-

ator L∗ and is in the form v̂0 = c0 (1;m) , v̂i,n =
(
vi,n (x) ;mvi,n

(
1
3

))
, where v0 (x) and

vi,n (x) , i = 1, 2;n ∈ Z+ are the eigen- and associated vectors of the conjugate problem
and analogically we obtain the asymptotically formulas:

vi,n (x) =

{
ci,ncos

2ρi,n
3 cosρi,n x, x ∈

[
0, 13
]
,

ci,ncos
ρi,n
3 cosρi,n (1− x) , x ∈

[
1
3 , 1
]
,

i = 1, 2;n ∈ Z+, (11)

here c0, ci,n are the normalized multipliers. We can easily calculate that, the c1n, c2n
normalized multipliers hold

c0 =
1

1 + |m|2
, c1n = 6 +O

(
1

n

)
, c2n = 6 +O

(
1

n

)
.

If we consider these formulas at (11) we will obtain for vi,n (x) , i = 1, 2; ;n ∈ Z+ the
following formulas:

v1,n =

{
−6cos

(
3πn+ 3π

2

)
x +O

(
1
n

)
, x ∈

[
0, 13
]

O
(
1
n

)
, x ∈

[
1
3 , 1
] (12)

v2.n =

{
O
(
1
n

)
, x ∈

[
0, 13
]

6ancos
(
3πn
2 + 3π

4

)
(1− x) +O

(
1
n

)
, x ∈

[
1
3 , 1
]
.

(13)
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One can easily seen that the system (10) implies from the following system by the
conversion

ui,n = ai,1e1,n + ai,2e2,n, i = 1, 2; n ∈ Z+


e1,n (x) =

{
cos
(
3πn+ 3π

2

)
x , x ∈

[
0, 13
]
,

0, x ∈
[
1
3 , 1
]
,

e2,n (x) =

{
0, x ∈

[
0, 13
]
,

cos
(
3πn
2 + 3π

4

)
(1− x) , x ∈

[
1
3 , 1
] (14)

where the numbers ai,1 and ai,2, i = 1, 2 are the elements of the following matrix

A =

(
−1 0
0 an

)
. (15)

Note that,

detA = −an ̸= 0.

On the other hand the system {ei,n}i=1,2,n∈Z+ forms a basis for Mp,α (0, 1) , 1 < p < ∞.

Indeed, according to the decomposition Mp,α (0, 1) = Mp,α
(
0, 13
)
⊕Mp,α

(
1
3 , 1
)
, and since

the system {e1,n}n∈Z+ forms basis in Mp,α
(
0, 13
)
, and the system {e1,n}n∈Z+ forms basis

in Mp,α
(
1
3 , 1
)
, therefore, their combination will forms a basis in Mp,α (0, 1). If we take it

into consideration and apply Theorem 2.3, then we obtain that the system {ui,n}i=1,2;n∈Z+

forms basis in Mp,a (0, 1). Consider the system in {û0}∪{ûi,n}i=1,2;n∈Z+ in Mp,α (0, 1)⊕C,
where

û0 = (0, 1) , ûi,n = (ui,n; 0) , i = 1, 2; n ∈ Z+. (16)

It is clear that, the system {û0} ∪ {ûi,n}i=1,2; n∈Z+ forms basis in Mp,α (0, 1) ⊕ C. Let
us show that it also forms a q-basis, where q = p/(p − 1). One can easily check that the

system {v̂0} ∪
{
ϑ̂i,n

}
i=1,2;n∈Z+

, which biorthogonal to it is in the following form:

v̂0 =
1

1 + |m|2
(1;m) , ϑ̂i,n = (ϑi,n; 0) , i = 1, 2; n ∈ Z+, (17)

where

ϑ1.n =

{
−6cos

(
3πn+ 3π

2

)
x , x ∈

[
0, 13
]

0, x ∈
[
1
3 , 1
] (18)

ϑ2.n =

{
0, x ∈

[
0, 13
]

6αncos
(
3πn
2 + 3π

4

)
(1− x) , x ∈

[
1
3 , 1
]
.

(19)

Let 1 < p ≤ 2. Then according to inequality Hausdorf-Young for trigonometric system
(see [28], p.153) for each f ∈ Lp (0, 1) the inequality

(
2∑

i=1

∞∑
n=0

|< f, ei,n >|q
) 1

q

≤ M∥f∥Lp
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is fulfilled, where M > 0 is a fixed number which does not depend on f . Taking into
consideration that, the system {ϑi,n}i=1,2;n∈Z+ implies from the system {ei,n}i=1,2,n∈Z+

by conversion
ϑi,n = bi,1e1,n + bi,2e2,n, i = 1, 2; n ∈ Z+

where bi1 and bi,2, i = 1, 2 are the elements of the matrix

B =

(
−6 0
0 6αn

)
.

We obtain from here that for an arbitrary f̂ ∈ Lp (0, 1)⊕C the following inequality holds:(∣∣∣〈f̂ , ϑ̂0

〉∣∣∣q + 2∑
i=1

∞∑
n=0

∣∣∣〈f̂ , ϑ̂i,n

〉∣∣∣q)
1
q

≤ M
∥∥∥f̂∥∥∥

Lp⊕C
.

Then, taking into account the embedding Mp,α (0, 1) ⊂ Lp (0, 1), we obtain that for any

f̂ ∈ Mp,α (0, 1)⊕ C the inequality(∣∣∣〈f̂ , ϑ̂0

〉∣∣∣q + 2∑
i=1

∞∑
n=0

∣∣∣〈f̂ , ϑ̂i,n

〉∣∣∣q)
1
q

≤ M
∥∥∥f̂∥∥∥

Mp,α⊕C
,

holds, i.e. the system {ûi,n}i=1,2;n∈N forms a q-basis for Mp,α (0, 1)⊕ C.
Let’s point

ŷi,n =

(
yi,n (x) ;myi,n

(
1

3

))
, i = 1, 2;n ∈ Z+,

According to the formulas (8) since yi,n
(
1
3

)
= O

(
1
n

)
, from (10) implies that the systems

{ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ and {û0} ∪ {ûi,n}i=1,2; n∈Z+ are p-close,

2∑
i=1

∞∑
n=0

∥ŷi,n − ûi,n∥p < ∞.

Thus, all the conditions of Theorem 2.1 are fulfilled and according to this theorem the
system {ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ also forms an isomorphic basis to the system {û0} ∪
{ûi,n}i=1,2; n∈Z+ in Lp (0, 1) ⊕ C, therefore, it is minimal in this space and in view of
the embedding

(Lq (0, 1)⊕ C) ⊂ (Mp,α (0, 1)⊕ C)∗,

we find that it is minimal in Mp,α (0, 1)⊕C. Thus, all the conditions of Theorem 2.3 hold
and by this theorem, the system {ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ forms an equivalent basis to
the system {û0} ∪ {ûi,n}i=1,2; n∈Z+ for space Mp,α (0, 1)⊕ C .

Now suppose that p > 2, then 1 < q < 2. Taking into account that in this case the
following inclusion is fulfilled:

Lp (0, 1) ⊂ Lq (0, 1) , lp ⊂ lq,
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then for f̂ ∈ Lp (0, 1)⊕ C we obtain:

(∣∣∣〈f̂ , ϑ̂0

〉∣∣∣p + 2∑
i=1

∞∑
n=0

∣∣∣〈f̂ , ϑ̂i,n

〉∣∣∣p)
1
p

≤ M
∥∥∥f̂∥∥∥

Lp⊕C
≤ M

∥∥∥f̂∥∥∥
Mp,a⊕C

.

This implies that the system {û0} ∪ {ûi,n}i=1,2; n∈Z+ forms a p- basis in Mp,α (0, 1) ⊕ C.
Besides, the systems {ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ and {û0} ∪ {ûi,n}i=1,2; n∈Z+ are q-close in
Mp,α (0, 1)⊕ C :

2∑
i=1

∞∑
n=0

∥ŷi,n − ûi,n∥qMp,α⊕C < ∞.

According to the system {ŷ0}∪ {ŷi,n}i=1,2; n∈Z+ is minimal in Mp,a (0, 1) ⊕ C and again
applying the Theorem 2.1, we obtain that it is a basis in Mp,a (0, 1) ⊕ C isomorphic to
{û0} ∪ {ûi,n}i=1,2; n∈Z+ .

Now consider the basicity {y0} ∪ {yi,n}∞i=2;n∈Z+ of the system of eigenfunctions and
associated functions of the problem (1)-(3) in Lp (0, 1) . Applying the Theorem 2.3 , we
obtain the truth of the following theorem.

Theorem 3.2. In order the system {yi,n}∞i=1,2;n∈Z+,n̸=n0
of eigenfunctions and as-

sociated functions of the problem (1)-(3) forms a basis in Mp,α (0, 1) , 1 < p < ∞ after
eliminate any function yi,n0 (x) it is necessary and sufficient that the corresponding func-
tion vi,n0 (x) of the biorthogonal system satisfy the condition vi,n0

(
1
3

)
̸= 0.If vi,n0

(
1
3

)
= 0,

then after the eliminating function yi,n0 (x) from the system, obtaining system does not
form basis in Mp,α (0, 1), moreover in this case it is not complete and not minimal in this
space.

In (7) and (8) the parameter m which included in the problem (1)- (3), generally
speaking is a complex number. But in some particular cases it is possible to refine the
root subspaces of the operator L. So, if m > 0, then the operator L linearized of the
problem (1)- (3) is a self-adjoint operator in L2 ⊕ C , and in this case all the eigenvalues
are simple and for each eigenvalue there corresponds only one eigenvector. If m < 0, then
the operator L is a J -self-adjoint operator in L2⊕C, and in this case applying the results
of [29,30], we obtain that all eigenvalues are real and simple, with the exception of, may be
either one pair of complex conjugate simple eigenvalues or one non-simple real value. In
the case of a complex value m the operator L has an infnite number of complex eigenvalues
that are asymptotically simple and, consequently, the operator L can have a finite number
of associated vectors. If there are associated vectors, they are determined up to a linear
combination with the corresponding eigenvector. Therefore depending on the choice of the
coefficients of the linear combination there are associated vectors satisfying the condition
vi,n0

(
1
3

)
̸= 0, and there are also associated vectors not satisfying this condition.
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