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On Strong Solvability of One Nonlocal Boundary Value
Problem for Laplace Equation in Grand Sobolev Space
in Rectangle

T.B. Gasymov, B.Q. Akhmadli∗

Abstract. We consider a nonlocal boundary value problem for the Laplace equation in a rectan-
gular domain in Sobolev spaces generated by the norm of the grand Lebesgue space. The concept
of strong solvability of this problem is introduced and it’s correct solvability is proved. At the same
time, the basis property of the eigen and associated functions of one spectral problem in separable
grand Lebesgue spaces is proved, and this fact is used to establish correct solvability. Note that
earlier this problem in a semi-infinite strip in the classical formulation was considered in the works
of E.I. Moiseev [24], M.E. Lerner and O.A. Repin [20].
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1. Introduction

The theory of the strong and weak solvability of linear elliptic equations in the Sobolev
spaces is well developed and can be found in the classical monographs. In spite of this,
a lot of problems, arising in the mechanics and the mathematical physics do not fit to
this theory. An example, of such a problem is the following degenerate elliptic equation,
studied by Moiseev in [24].

Consider the following (formal for now) nonlocal boundary value problem for the
Laplace equation:

uxx + uyy = 0, 0 < x < 2π, 0 < y < h, (1)

u (x, 0) = ϕ (x) , u (x, h) = ψ (x) , 0 < x < 2π, (2)

ux (0, y) = 0, u (0, y) = u (2π, y) , 0 < y < h. (3)

Such problems have specific peculiarities compared to the ones with local conditions.
Earlier, F.I.Frankl [13]; [14, p. 453-456] considered the problem with nonlocal boundary
condition for a mixed type equation. Bitsadze-Samarski problem [10] for elliptic equations
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is also nonlocal with supports on a part of the boundary of domain, and these supports are
free of other boundary conditions. In [18], N.I.Ionkin and E.I.Moiseev solved the boundary
value problem for multi-dimensional parabolic equations with nonlocal conditions, whose
supports are the characteristic and the improper parts of the boundary of domain.

We note that recently, interest in nonstandard functions spaces has greatly increased
in connection with their applications in mechanics, mathematical physics and pure math-
ematical problems. Such spaces include Lebesgue spaces with a variable summability
exponent, Morrey spaces, grand Lebesgue spaces, Orlicz, Lorents, Martsinkevich, etc..
That’s why the number of research works dedicated has been growing in recent years (see,
e.g., [2, 3, 5, 6, 7, 8, 9, 11, 12, 21, 25]), and the elaboration of a corresponding theory is far
from complete. This article is also devoted to this direction. Let us note, that this problem
cannot be treated with the classical methods developed for linear elliptic operators. Our
method is based on spectral theory, which is used, for example, in the works [19, 21, 24].

2. Auxiliary concepts and facts

We will use standard notations. N will be the set of positive integers, while α =
(α1;α2) ∈ Z+ × Z+ will denote a multi-index, where Z+ = N ∪ {0}. Denote ∂αu =
∂|α|u

∂xα1∂yα2 , where |α| = α1 +α2. By |M | we will denote the Lebesgue measure of the set M ;

M will be the closure of M . C∞
(
M
)

will stand for the infinitely differentiable functions
on M , and C∞0 (M) will denote the infinitely differentiable and finite functions on M .
Throughout this paper we will assume that p

′
is a conjugate number of p, 1 < p < +∞:

1
p′

+ 1
p = 1. dσ is an area element. We also accept pε = p− ε.

Let us define our weighted grand Sobolev space. Let, Π = (0, 2π)× (0, h). Denote by
Lp) (Π) a Banach space of functions on Π with the mixed norm

‖f‖Lp)(Π) = sup
0<ε<p−1

∫ h

0

(
ε

∫ 2π

0
|f (x; y)|p−εdx

) 1
p−ε

dy, 1 < p < +∞.

Denote by W 2
p) (Π) a grand Sobolev space generated by the norm

‖u‖W 2
p)

(Π) =
∑
|α|≤2

‖∂αu‖Lp)(Π).

Now denote by Lp) (I), where I = (0, 2π), a grand Lebesgue space generated by the
norm

‖f‖Lp)(I) = sup
0<ε<p−1

(
ε

∫
I
|f (x)|p−εdx

) 1
p−ε

.

We will also consider the grand Sobolev space W 2
p) (I), generated by the norm

‖f‖W 2
p)

(I) = ‖f‖Lp)(I) + ‖f ′‖Lp)(I) + ‖f ′′‖Lp)(I).
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These spaces are non-separable and therefore the method of biorthogonal expansion (essen-
tially the spectral method) is not applicable for studying the solvability of differential equa-
tions with respect to these spaces. In this regard we select the subspace Np)(Π)⊂ Lp)(Π)
(separable) based on the shift operator Tδ:

(Tδu)(x; y) =

{
u(x+ δ : y) (x+ δ : y) ∈ Π,
0 (x+ δ : y) /∈ Π.

So let us assume

N2
p)(Π) =

W 2
p)(Π) :

∑
|α|≤2

‖Tδ(∂αu)− ∂αu‖Lp)(Π) → 0, δ → 0

 .

Definition 1. A system {un}n∈N ⊂ X is called a basis if any element f ∈ X is uniquely
represented as a series

f =
∞∑
n=1

cnun

convergent in the norm X.

Definition 2. A system {un}n∈N ⊂ X is called complete in X if Sp {un} = X and
minimal in X if un /∈ Sp{uk}k 6=n.

It is known that each basis of the space X is a complete and minimal system in X, the
converse is not true in general.

Minimum criterion. The system {uN}n∈N is minimal in X if and only if there exists
a biorthogonal system i.e. there exists a system {ϑn}n∈N ⊂ X∗ such that 〈un, ϑk〉 =
ϑk(un) = δnk , where δnk is the Kronecker symbol.

Basis criterion. The system {un}n∈N ⊂ X is a basis of the space X if and only if
the following conditions are satisfied.

1. {un}n∈N is complete and minimal in X;

2. uniformly bounded projectors

Pnf =
n∑
k=1

〈f, ϑk〉uk,

where {vk}k∈N is a biorthogonal system.

Definition 3. A system {un}n∈N ⊂ X is called a basis with brackets in X if there exists a
sequence of integers 0 = n0 < n1 < n2 < . . ., such that each element of f ∈ X is uniquely
represented as a series

f =
∞∑
k=0

nk+1∑
i=nk+1

ciui,

convergent in the norm X.
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To obtain our main results we will extensively use also the following Minkowski’s
inequality for integrals.

Proposition 1 (Minkowski’s inequality). Let (Mk;σMk
;µk), k = 1, 2, be measurable

spaces with σ-finite measures µk and F (x; y) be a µ1 × µ2-measurable function. Then∥∥∥∥∫
M1

F (x; y) dµ1 (x)

∥∥∥∥
Lp)(µ2)

≤
∫
M1

‖F (x; ·)‖Lp)(µ2)dµ1 (x),

where

‖f‖Lp)(µ) = sup
0<ε<p−1

(
ε

∫
|f |p−εdµ

) 1
p−ε

.

So let’s introduce the following

Definition 4. A function u ∈ N2
p) (Π) is called a strong solution of the problem (1)-(3) if

the equality (1) is satisfied for a.e. (x; y) ∈ Π and its trace u|∂Π satisfies the relations (2),
(3).

Introduce the systems of functions {un (x)}n∈Z+ and {ϑn (x)}n∈Z+ , where

u2n (x) = cos nx , n ∈ Z+, u2n−1 (x) = xsinnx, n ∈ N, (4)

ϑ0 (x) =
1

2π2
(2π − x) , ϑ2n (x) =

1

π2
(2π − x) cos nx , ϑ2n−1 (x) =

1

π2
sin nx , n ∈ N. (5)

Note that these systems are biorthogonal conjugate, which can be verified directly. To
obtain our main result, we will significantly use the following theorem.

Theorem 1. The system (4) forms a basis for Np) (I).

Proof. Conjugate space of Lp) (I) is Lp′ ) (I). It is absolutely clear that the system (4)

belongs to Lp′ ) (I) and is biorthonormalized to the system (4) (see [1]). It follows that (4)

is minimal in Lp) (I). On the other hand, from [1] it follows that the system (4) forms a
basis with brackets for Np) (I) for every p ∈ (1,+∞), and, consequently, it is complete in
Lp1) (I). Then from the embedding Np1) (I) ⊂ Lp) (I) it follows that (4) is complete and,
consequently, complete and minimal in Lp) (I) .

Let’s prove the basicity of the system (4) for Np) (I). Consider the projectors

Pn (f) =

n∑
k=0

〈f, ϑk〉uk,∀n ∈ Z+, ∀f ∈ Np) (I)

where

〈f, g〉 =

∫ 2π

0
f (x) g (x)dx.

From the basicity with brackets of the system (4) for Np) (I) it follows that

∃C > 0 : ‖P2n (f)‖Lp)(I) ≤ C‖f‖Lp)(I), ∀n ∈ N. (6)
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On the other hand, from (4), (6) we have

∃M > 0 : ‖un‖Lp)(I) ≤M, ‖ϑn‖L
p
′
)
≤M, ∀n ∈ N. (7)

Considering the relations (6), (7), we obtain

‖P2n+1(f)‖Lp)(I) = ‖P2n(f) 〈f, ϑ2n+1〉u2n+1‖Lp)(I) ≤ ‖P2n (f)‖Lp)(I)+

+‖〈f, ϑ2n+1〉u2n+1‖Lp)(I) ≤ C‖f‖Lp)(I) + ‖f‖Lp)(I)‖un‖Lp(I)‖ϑn‖L
p
′
)
(I) ≤

≤
(
C +M2

)
‖f‖Lp)(I). (8)

From (6), (8) it follows that the projectors {Pn}n∈Z+ are uniformly bounded, and, accord-
ing to the criterion for basicity, this means that the system (4) forms a basis for Np) (I).
The theorem is proved.

3. Main Results

In this section, we will study the existence and uniqueness of strong solution of the
problem (1)-(3) in the sense of Definition 4. First, denote Γ0 = {(0; y) : 0 < y < h} and
Γ2π = {(2π; y) , 0 < y < h}. Consider the following nonlocal problem:

∆u = 0, (x; y) ∈ Π, (9)

u|I0 = ϕ, u|Ih = ψ, u|Γ0 = u|Γ2π , ux|Γ0 = 0. (10)

By the solution of this problem, we mean a function u ∈ N2
p) (Π), which satisfies the

equality (9) a.e. in Π and whose traces satisfy the relations (10) on the boundary ∂Π =
I0 ∪ Ih ∪ Γ0 ∪ Γ2π. Let’s first prove the uniqueness of the solution. The following theorem
is true:

Theorem 2. The functions ϕ,ψ ∈ N2
p) (I) satisfy the conditions ϕ (2π)−ϕ (0) = ϕ

′
(0) =

0, ψ (2π)− ψ (0) = ψ
′
(0) = 0. If the problem (1)-(3) has a solution in N2

p) (Π), then it is
unique.

Proof. Suppose u (x, y) ∈ N2
p) (Π) is a solution of the problem (1)-(3). Consider

un (y) = 〈u (·, y) , ϑn (·)〉, i.e.

U0 (y) = 1
2π2

∫ 2π
0 u (x, y) (2π − x)dx

U2n (y) = 1
π2

∫ 2π
0 u (x, y) (2π − x)cos nx dx

U2n−1 (y) = 1
π2

∫ 2π
0 u (x, y)sin nx dx, n ∈ N.

,

 (11)

we obtain the following relations for U2n−1 (y) (respectively, for U2n (y)):

U
′′
2n−1 (y)− n2U2n−1 (y) = 0, y ∈ (0.h) , (12)
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U
′′
2n (y)− n2U2n (y) = −2nU2n−1 (y) , y ∈ (0.h) . (13)

By Newton-Leibniz formula we have

u (x, ξ) = u (x, 0) +

∫ ξ

0

∂u (x, y)

∂y
dy = ϕ (x) +

∫ ξ

0

∂u (x, y)

∂ξ
dξ, a.e. x ∈ I.

Consequently,

|u (x, ξ)− ϕ (x)| ≤
∫ ξ

0

∣∣∣∣∂u (x, y)

∂y

∣∣∣∣dy, a.e. x ∈ I.

Hence it immediately follows that∫
I
|u (x, ξ)− ϕ (x)|dx ≤

∫
I

∫ ξ

0

∣∣∣∣∂u (x, y)

∂y

∣∣∣∣dydx. (14)

We have |Πξ| → 0 as ξ → +0. Then from (14) it follows that

uξ (·)→ ϕ (·) , ξ → +0, (15)

in the norm of the space L1 (I).

Similarly we have

u (x, ξ) = u (x, h)−
∫ h

ξ

∂u (x, y)

∂y
dy = ψ (x)−

∫ h

ξ

∂u (x, y)

∂y
dy, a.e. x ∈ I.

Hence, ∫
I
|u (x, ξ)− ψ (x)|dx ≤

∫
I

∫ h

ξ

∣∣∣∣∂u (x, y)

∂y

∣∣∣∣dydx. (16)

As |Π\Πξ| → 0 when ξ → h− 0, from (16) it follows that

uξ (·)→ ψ (·) , ξ → h− 0, (17)

in the norm of the space L1 (I).

On the other hand, it is clear that Un (y) ∈ W 2
1 (0, h). Hence it immediately follows

that there exist the limits

lim
y→+0

Un (y) = Un (0) , lim
y→h−0

Un (y) = Un (h) , ∀n ∈ Z+.

By (15) and (17), from the last two relations it immediately follows that

Un (0) = ϕn, Un (h) = ψn, ∀n ∈ Z+, (18)
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where 

ϕ0 = 1
2π2

∫ 2π
0 ϕ (x) (2π − x) dx,

ϕ2n−1 = 1
π2

∫ 2π
0 ϕ (x) sin nx dx,

ϕ2n = 1
π2

∫ 2π
0 ϕ (x) (2π − x) cos nx dx, n ∈ N ;

(19)



ψ0 = 1
2π2

∫ 2π
0 ψ (x) (2π − x) dx,

ψ2n−1 = 1
π2

∫ 2π
0 ψ (x) sin nx dx,

ψ2n = 1
π2

∫ 2π
0 ψ (x) (2π − x) cos nx dx, n ∈ N.

(20)

The solution of the problem (12), (18) is

U2n−1 (y) = ψ2n−1
sinhny

sinhnh
+ ϕ2n−1

sinhn (h− y)

sinhnh
,∀n ∈ N, (21)

and the solution of the problem (13), (18) is

U0 (y) =
ψ0 − ϕ0

h
y + ϕ0, (22)

U2n (y) =
ψ2nsin nh+ hψ2n−1cos nh− hϕ2n−1

sinhnh

sinhny

sinhnh
+

+ϕ2n
sinhn (h− y)

sinhnh
− y(ψ2n−1

coshny

sinhnh
− ϕ2n−1

coshn(h− y)

sin nh
, ∀n ∈ N. (23)

Now we can proceed to the proof of the uniqueness of solution. For this, it suffices to
prove that the corresponding homogeneous problem has only trivial solution. In fact, if
ϕ (x) = ψ (x) ≡ 0, then ϕn = ψn = 0, ∀n ∈ Z+, and from the formulas (21)-(23) it follows
that Un (y) = 0, ∀y ∈ (0, h) , ∀n ∈ Z+. As uy ∈ Np) (I), ∀y ∈ (0, h), the basicity of the
system (4) for Np) (I) implies uy (x) = 0 a.e. x ∈ I and ∀y ∈ (0, h). Hence it follows
that u (x; y) = 0 a.e. (x; y) ∈ Π. Consequently, the homogeneous problem has only trivial
solution, and this completes the proof of uniqueness.

Now let’s prove the existence of solution. The following theorem is true:

Theorem 3. Let the boundary functions ϕ (x) and ψ (x) belong to the space N2
p) (I) and

satisfy the conditions

ϕ (0)− ϕ (2π) = ϕ
′
(0) = 0, ψ (0)− ψ (2π) = ψ

′
(0) = 0.

Then the problem (1)-(3) has a (unique) solution in N2
p) (Π).

Proof. Consider the function

u (x, y) = U0 (y) +
∞∑
n=1

Un (y)un (x) = U0 (y) +
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+

∞∑
k=1

(U2k (y) cos kx+ U2k−1 (y)xsin kx) , (x, y) ∈ Π, (24)

where the coefficients U0 (y) , U2k (·) , U2k−1 (·) , k ∈ N , are defined by (21)-(23). Let’s show
that the function u (x, y) belongs to N2

p) (Π). Denote by uα1,α2 (x, y) the sum of the series

obtained by the formal differentiation of the series (24), i.e.

uα1,α2 (x, y) = U
(α2)
0 (y) +

∞∑
n=1

U (α2)
n (y)u(α1)

n (x), (25)

where α1, α2 ∈ Z+, α1 + α2 = 0, 1, 2; u0,0 (x, y) = u (x, y) and U
(α2)
n (y) = dα2Un

dyα2 ;

U
(α1)
n (x) = dα1Un

dxα1 .

Let us first consider the following member of series (24).

u1 (x, y) =

∞∑
k=1

U2k−1 (y) xsin kx .

So, differentiating this series formally term-by-term, we have

∂2u1

∂y2
=
∞∑
k=1

U
′′
2k−1 (y)xsin kx =

∞∑
k=1

k2U2k−1 (y)xsin kx, (26)

∂u1

∂x
=

∞∑
k=1

U2k−1 (y) sin kx +

∞∑
k=1

kU2k−1 (y)xcos kx, (27)

∂2u1

∂x2
= 2

∞∑
k=1

kU2k−1 (y) cos kx−
∞∑
k=1

k2U2k−1 (y)xsin kx. (28)

Denote

w (x, y) =
∞∑
k=1

k2U2k−1 (y)x sin kx.

Let’s show that the function w (x, y) belongs to Np) (Π). Let

ϕ
′′
2k−1 =

1

π2

∫ 2π

0
ϕ
′′

(x) sin kxdx, ψ
′′
2k−1 =

1

π2

∫ 2π

0
ψ
′′

(x) sin kxdx.

From (19), integrating by parts, we obtain

ϕ2k−1 = − 1

π2k

∫ 2π

0
ϕ (x) dcos kx = − 1

π2k

(
ϕ (2π)− ϕ (0)−

∫ 2π

0
ϕ
′
(x) cos kx dx

)
=

=
1

π2k

∫ 2π

0
ϕ
′
(x) cos kx dx =

1

π2k2

∫ 2π

0
ϕ
′′

(x) sin kx dx =
1

k2
ϕ
′′
2k−1.
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Similarly, from (20) we have

ψ2k−1 = − 1

k2
ψ
′′
2k−1.

Thus,

w (x, y) =

∞∑
k=1

(
ψ
′′
2k−1

sinh ky

sinh kh
+ ϕ

′′
2k−1

sinh k (h− y)

sinh kh

)
xsin kx .

Let ε ∈ (0, p− 1) be an arbitrary number.We have the following continuous embeddings
Lp(I) ⊂ Lp−ε(I) ⊂ L1(I). Let us suppose that β = p

p−ε =⇒ 1
β′

= 1 − p−ε
p = ε

p . Applying

the Holder’s inequality, we have∫ 2π

0
|f |p−εdx =

∫ 2π

0
|f |p−εdx ≤

(∫ 2π

0
|f |pdx

) 1
β
(∫ 2π

0
dx

) 1

β
′

=⇒

=⇒
(
ε

∫ 2π

0
|f |p−εdx

) 1
p−ε

≤
(∫ 2π

0
|f |pdx

) 1
p
(∫ 2π

0
dx

) ε
p−ε

1
p

ε
1
p−ε ≤ c

(∫ 2π

0
|f |pdx

) 1
p

,

where c > 0 is a constant which is independent of f and ε. This immediately follows

‖f‖Lp)(I) ≤ c‖f‖Lp(I), ∀f ∈ Lp)(I).

Let ∃ α > 1 and 1
α + 1

α′
= 1.

Applying Holder’s inequality again, we obtain(∫ 2π

0
|w (x, y)|pdx

) 1
p

≤
(∫ 2π

0
1dx

) 1
α
(∫ 2π

0
|w (x, y)|pα

′

dx

) 1

pα
′

= c

(∫ 2π

0
|w (x, y)|p1dx

) 1
p1

,

where c = (2π)
1
α (consequently, does not depend on w (x, y)) and p1 = pα

′
. Let’s consider

the cases p ≥ 2 and 1 < p < 2. Consider the following separate cases regarding p.
I. p ≥ 2. From the previous inequality we have

‖w(.; y)‖Lp) ≤ c
(∫ 2π

0
|w (x, y)|pdx

) 1
p

≤ c
∞∑
k=1

|U2k−1 (y)| ≤ c1

∞∑
k=1

|U2k−1 (y)| ≤

≤ c1

∞∑
k=1

∣∣∣∣ψ′′2k−1

sinh ky

sinh kh
+ ϕ

′′
2k−1

sinh k (h− y)

sinh kh

∣∣∣∣ ≤
≤ c1

∞∑
k=1

(∣∣∣ψ′′2k−1

∣∣∣ sinh ky
sinh kh

+
∣∣∣ϕ′′2k−1

∣∣∣ sin k(h− y)

sinh kh

)
.

Hence, first integrating with respect to y ∈ (0, h) and then applying Holder’s inequality
for any β ∈ (1,∞), we obtain

‖w‖Lp)(Π) ≤ c1

∞∑
k=1


∣∣∣ψ′′2k−1

∣∣∣
sinh kh

∫ h

0
sinh kydy +

∣∣∣ϕ′′2k−1

∣∣∣
sinh kh

∫ h

0
sinh k (h− y) dy

 ≤
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≤ c1

∞∑
k=1

∣∣∣ψ′′2k−1

∣∣∣+
∣∣∣ϕ′′2k−1

∣∣∣
sin kh

∫ h

0
sinh kydy ≤

≤ c1

∞∑
k=1

cosh kh− 1

ksinh kh

(∣∣∣ψ′′2k−1

∣∣∣+
∣∣∣ϕ′′2k−1

∣∣∣) ≤
≤ c2

∞∑
k=1

1

k

(∣∣∣ψ′′2k−1

∣∣∣+
∣∣∣ϕ′′2k−1

∣∣∣) ≤c2

( ∞∑
k=1

1

kβ
′

) 1

β
′
( ∞∑

n=1

∣∣∣ϕ′′n∣∣∣β
) 1

β

+

( ∞∑
n=1

∣∣∣ψ′′n∣∣∣β
) 1

β

 .

Now, assuming β ≥ 2 and applying classical Hausdorff-Young inequality (see, e.g. [27, p.
154]. We have

‖w‖Lp)(Π) ≤ c3

(∥∥∥ψ′′∥∥∥
L
β
′ (I)

+
∥∥∥ϕ′′∥∥∥

L
β
′ (I)

)
. (29)

Let us suppose that r = pε
q and g ∈ Lp) (I) . Then 1 < r < pε and we have

(∫
I
|g|rdx

) 1
r

=

(∫
I
|g|

pε
q dx

) 1
r

≤
(∫

I
|g|pεdx

) 1
qr
((∫

I
dx

)) 1

q
′
r

=

= c

(∫
I
|g|pεdx

) 1
pε

.

Then, the last inequality means g ∈ Lr (I) and

‖g‖Lr(I) ≤ c‖g‖Lpε (I), (30)

where c > 0 is a constant independent of g. Also note that the continuous embedding
Lp) (I) ⊂ Lα (I) is true for every α ∈ (1, r) . Let us choose β big enough to satisfy the
condition

1 < β
′
< r ⇒ ‖g‖L

β
′ (I) ≤ c‖g‖Lr(I)

is satisfied. Then from inequalities (29),(30) we obtain

‖w‖Lp)(Π) ≤ c
(∥∥∥ψ′′∥∥∥

Lp)(I)
+
∥∥∥ϕ′′∥∥∥

Lp)(I)

)
.

II. p ∈ (1, 2) . Therefore, choosing α > 1 close enough to 1, we can provide that p1 = pα
′
>

2 (this is possible, because α
′ → +∞ as α→ 1 + 0). With this, further considerations are

carried out similar to the previous case.
Other series from (26)-(28), and, consequently, all series from (25) are estimated in a

similar way. So, as a result, we obtain

‖u‖W 2
p)

(Π) ≤ c
(
‖ϕ‖W 2

p)
(I) + ‖ψ‖W 2

p)
(I)

)
,



On Strong Solvability of One Nonlocal Boundary Value Problem 13

where c > 0 is a constant independent of ϕ and ψ. The fulfillment of equation (9) by
u (·; ·) can be verified directly. Let’s verify the fulfillment of boundary conditions. Denote
the trace operators on Γ0,Γ2π, I0 and Ih by θ0, θ2π, T0 and Th, respectively. Let’s show
that T0u = ϕ. It is clear that, T0u ∈ L1 (I) and ϕ ∈ L1 (I) . From the boundedness of the
operator T0 ∈

[
W 2
p (Π) ;Lp (I)

]
, ∀ p ≥ 1 , it follows that if um → u in W 2

p) (Π), then

um/I → u/I in Lp) (I).
Now, let’s consider the following functions:

um (x, y) = U0 (y) +

m∑
n=1

(U2n (y) cos nx + U2n−1 (y)xsinnx ), (x; y) ∈ Π,m ∈ N.

We have

T0um = um (x, 0) = U0 (0) +

m∑
n=1

(U2n (0) cos nx + U2n−1 (0)xsinnx ) =

=
1

2π2

∫ 2π

0
ϕ (τ) (2π − τ) dτ+

+
m∑
n=1

(
1

π2

∫ 2π

0
ϕ (τ) (2π − τ) cos nτdτcos nx +

1

π2

∫ 2π

0
ϕ (τ) sin nτdτsin nx

)
. (31)

It is clear that, T0um → T0u. On the other hand, the basicity of the system (4) for Np) (I)
implies T0um → ϕ,m→∞, in Lp) (I). Consequently, T0u = ϕ, a.e. on I.

Absolutely similar we can show that Thum → ψ,m → ∞, in Lp) (I). Consequently,
Thu = ψ, a.e. on I.

Consider the operators θ0 and θ2π. It is clear that θ0um = θ2πum, ∀m ∈ N . Obviously,
θ0um → θ0u and θ2πum = θ2πu ⇒ θ0u = θ2πu. Thus, the boundary conditions (10) are
fulfilled.

The theorem is proved.
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