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Approximation of the Hilbert transform in
Orlicz spaces

L.Sh. Alizade

Abstract. The Hilbert transform is the main part of the singular integral equations on the real
line. Therefore, approximations of the Hilbert transform are of great interest. This article is de-
voted to the approximation of the Hilbert transform in Orlicz spaces by operators which introduced
by V.R.Kress and E.Mortensen to approximate the Hilbert transform of analytic functions in a
strip.
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1. Introduction

The Hilbert transform of a function u ∈ Lp(R), 1 ≤ p < ∞ is defined as the Cauchy
principle value integral [23]

(Hu)(t) =
1

π

∫
R

u(τ)

t− τ
dτ, t ∈ R,

where the integral is understood in the Cauchy principal value sense. It is well known
(see [18, 23]) that the Hilbert transform of the function u ∈ Lp(R), 1 ≤ p <∞, exists for
almost all values of t ∈ R . In case 1 < p < ∞, the Hilbert transform is a bounded map
in the space Lp(R) and satisfies the equation:

H2 = −I.

The Hilbert transform plays an important role in the theory and practice of signal
processing operations in continuous system theory because of its relevance to such problems
as envelope detection and demodulation, as well as its use in relating the real and imaginary
components, and the magnitude and phase components of spectra. The Hilbert transform
is the main part of the singular integral equations on the real line (see [32]). Therefore,
approximations of the Hilbert transform are of great interest.

Many papers have dealt with the numerical approximation of the Hilbert Transform in
the case of bounded intervals and the reader can refer to [2, 7? , 12, 13, 15, 16, 19, 20, 21,
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28, 30, 33, 34, 36, 37, 38, 42, 43] and the references given there. On the other hand, the
literature concerning the numerical integration on unbounded intervals is by far poorer
than the one on bounded intervals. The case of the Hilbert Transform has been considered
very little and the reader can consult [5, 11, 14, 15, 25, 27, 31, 39, 40, 41, 44]. In particular,
in [25] the authors assume that the function u is analytic in the strip {z ∈ C : |=z| <
d}, in which case they show that the series 2

π

∑
k∈Z,k 6=even

u(t+kδ)
−k uniformly converges to

(Hu)(t) as δ → 0. In [9] the author replaces the above series with the following one
1
π

∑
k∈Z

u(t+(k+1/2)δ)
−k−1/2 for a suitable choice of the step δ → 0.

This article is devoted to the approximation of the Hilbert transform of functions from
Orlicz spaces by operators of the form

(Hδu)(t) = 1
π

∑
k∈Z

u(t+(k+1/2)δ)
−k−1/2 , δ > 0

which were introduced in [25]. It is proved that the operators are uniformly bounded maps
in the Orlicz spaces, satisfies the equality

H2
δ = −I,

and for any δ > 0 the sequence of operators Hδ strongly converges to the operator H
in these spaces. Note that for Lebesgue and Hölder spaces these approximations were
considered respectively in the works [3, 4].

2. Orlicz spaces

Definition 1. A convex left continuous function Φ : [0,∞)→ [0,∞] satisfying the condi-
tions

lim
r→0+

Φ(r) = Φ(0) = 0, lim
r→∞

Φ(r) =∞

is called a Young function.

The class of Young functions satisfying the condition Φ(r) ∈ (0,∞) for any r ∈ (0,∞)
is denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on each bounded closed interval
and bijective from [0,∞) to [0,∞).

For the Young function Φ we will write

Φ−1(s) = inf {r ≥ 0 : Φ (r) > s} , 0 ≤ s ≤ ∞.

We note that if Φ ∈ Y, then Φ−1 is the usual inverse of the function Φ. And for each
Young function, we have the inequalities

Φ
(
Φ−1(r)

)
≤ r ≤ Φ−1 (Φ(r)) , r ≥ 0.

Definition 2. If there exists a number C > 1 such that the inequality

Φ (2r) ≤ CΦ (r)

holds for any r > 0, then the Young function Φ is said to satisfy the ∆2-condition (the
notation: Φ ∈ ∆2).
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Definition 3. If there exists a number C > 1 such that the inequality

Φ (r) ≤ 1

2C
Φ (Cr)

holds for any r > 0, then the Young function Φ is said to satisfy the ∇2-condition (the
notation: Φ ∈ ∇2).

For the Young function Φ, the function Φ̃ defined by the relation

Φ̃ (r) = sup {rs− Φ (s) : s ∈ [0.∞)} , r ≥ 0,

is called the complementary function. The complementary function Φ̃ also is a Young

function and ˜̃Φ = Φ. We note that Φ ∈ ∆2 (accordingly, Φ ∈ ∇2) if and only if Φ̃ ∈ ∇2

(accordingly, Φ̃ ∈ ∆2). For any r > 0, the following inequalities hold:

r ≤ Φ−1 (r) Φ̃−1(r) ≤ 2r.

Definition 4. Let Φ be a Young function. The set of measurable functions f : Ω → R,
Ω ⊂ R satisfying the condition

∃k > 0 :

∫
Ω

Φ (k |f (x)|) dx <∞

is called the Orlicz space (the notation: LΦ (Ω)).

The space LΦ (Ω) with norm

‖f‖LΦ
= inf

λ > 0 :

∫
Ω

Φ

(
|f (x)|
λ

)
dx ≤ 1


is a Banach space.

We note that if Φ (r) = rp, 1 ≤ p <∞, then LΦ (Ω) = Lp (Ω). The properties of Orlicz
spaces are investigated in the works [1, 22, 24].

The following analogue of the Hölder’s inequality is well known (see: [22]).

Theorem 1. Let Ω ⊂ R be a measurable set and functions f and g measurable on Ω. For
a Young function Φ and its complementary function Φ̃, the following inequality is valid∫

Ω
|f(x)g(x)|dx ≤ 2‖f‖LΦ(Ω)‖g‖LΦ̃(Ω)

.

Definition 5. Let Φ be a Young function. The set of sequences b = {bn}n∈Z satisfying
the condition

∃k > 0 :
∑
n∈Z

Φ (k|bn|) <∞

is called the Orlicz sequence space (the notation: lΦ).
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The space lΦ with norm

‖b‖lΦ = inf

{
λ > 0 :

∑
n∈Z

Φ

(
|bn|
λ

)
≤ 1

}
is a Banach space.

We note that if Φ (r) = rp, 1 ≤ p <∞, then lΦ = lp. The properties of Orlicz sequence
spaces are investigated in the works [17, 26, 29].

3. Properties of the approximating operators Hδ

The sequence h(b) = {(h(b))n}n∈Z is called the discrete Hilbert transform of the se-
quence b = {bn}n∈Z, where

(h(b))n =
∑
m6=n

bm
n−m

, n ∈ Z.

M.Riesz (see [35]) proved that if b ∈ lp, 1 < p <∞, then h(b) ∈ lp and the inequality

‖h(b)‖lp ≤ Cp‖b‖lp (1)

holds, where Cp is constant depending only on p.
We will use a modified version of the discrete Hilbert transform:

(h̃(b))n =
∑
m∈Z

bm
n−m− 1/2

, n ∈ Z.

K. Andersen [8] proved that the inequality (1) is also valid for the transform h̃, that is,
there exist C̃p > 0 such that the inequality

‖h̃(b)‖lp ≤ C̃p‖b‖lp (2)

holds for any b ∈ lp, 1 < p <∞. Then it follows from Marcinkiewicz interpolation theorem
in Orlicz spaces (see: [22]) that if Φ ∈ ∆2 ∩ ∇2, then the inequality (2) is also valid for
the space lΦ, that is, there exist C̃Φ > 0 such that the inequality

‖h̃(b)‖lΦ ≤ C̃p‖b‖lΦ
holds for any b ∈ lΦ.

In [3], the authors prove that the operators Hδ are uniformly bounded maps in the
spaces Lp(R), 1 < p <∞ and

‖Hδ‖Lp(R)→Lp(R) ≤ ‖h̃‖lp→lp .

Then it follows from Marcinkiewicz interpolation theorem in Orlicz spaces (see: [22]) that
if Φ ∈ ∆2 ∩ ∇2, then the operators Hδ are also uniformly bounded maps in the space
LΦ(R), that is there exist CΦ > 0 such that for any δ > 0

‖Hδ‖LΦ(R)→LΦ(R) ≤ CΦ. (3)
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Theorem 2. For any δ > 0 and u ∈ LΦ(R) the following inequality holds:

Hδ(Hδu)(t) = −u(t). (4)

Proof. For any u ∈ LΦ(R) we have

Hδ(Hδu)(t) = − 1
π

∑
k∈Z

(Hδu)(t+(k+1/2)δ)
k+1/2 = 1

π

∑
k∈Z

1
k+1/2 ·

1
π

∑
m∈Z

u(t+(k+m+1)δ)
m+1/2

= 1
π2

∑
k∈Z

∑
m∈Z

u(t+(k+m+1)δ)
(k+1/2)(m+1/2) = 1

π2

∑
k∈Z

∑
n∈Z

u(t+nδ)
(k+1/2)(n−k−1/2)

= 1
π2

∑
n∈Z

(∑
k∈Z

1
(k+1/2)(n−k−1/2)

)
u(t+ nδ). (5)

Since for n = 0 ∑
k∈Z

1

(k + 1/2)(n− k − 1/2)
= −4

∑
k∈Z

1

(2k + 1)2
= −π2,

and for n 6= 0 ∑
k∈Z

1

(k + 1/2)(n− k − 1/2)
=
∑
k∈Z

1

n

[
1

k + 1/2
+ 1

n−k−1/2

]

=
1

n
lim
N→∞

∑
|k|≤N

[
1

k + 1/2
+ 1

n−k−1/2

]
= 0,

then equality (4) follows from (5).

4. Approximation of the singular integral with Hilbert kernel in Orlicz
spaces

Let Φ ∈ ∆2∩∇2. Denote by LΦ(T ), the space of all measurable, 2π-periodic functions
with finite norm ‖ϕ‖LΦ(T ) = ‖ϕ‖LΦ([−π,π]).

It is well known that the singular integral with Hilbert kernel

(Sϕ)(t) =
1

2π

∫ π

−π
cot

t− τ
2

ϕ(τ)dτ,

is a bounded map in the space LΦ(T ) (see [45]).
Consider in LΦ(T ) the sequence of operators

(Snϕ)(t) =
1

n

n−1∑
k=0

cot
(
−π(2k+1)

2n

)
ϕ
(
t+ π(2k+1)

n

)
, n ∈ N.
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It is easy to verify that if

ϕ(t) =
a0

2
+
∞∑
m=1

(am cosmt+ bm sinmt),

then

(Snϕ)(t) =
∞∑
m=1

λ(n)
m (am cosmt+ bm sinmt),

where λ
(n)
m = 1 for m = 1, n− 1, λ

(n)
n = λ

(n)
2n = 0, λ

(n)
m = −1 for m = n+ 1, 2n− 1 and

λ
(n)
m+2n = λ

(n)
m for m ∈ Z. It follows from here that for any trigonometric polynomial P (t)

of order at most n− 1
(SnP )(t) = (SP )(t).

In [3], the authors prove that the operators Sn are uniformly bounded in Lp(T ), 1 <
p <∞, and for any n ∈ N the inequality

‖Sn‖Lp(T )→Lp(T ) ≤ 4 + 2‖h̃‖lp→lp

holds. Then it follows from Marcinkiewicz interpolation theorem in Orlicz spaces (see:
[22]) that if Φ ∈ ∆2 ∩∇2, then the operators Sn are also uniformly bounded maps in the

space LΦ(T ), that is there exist C̃Φ > 0 such that for any n ∈ N and for any ϕ ∈ LΦ(T )

‖Snϕ‖LΦ(T ) ≤ C̃Φ‖ϕ‖LΦ(T ).

In [6], it is proved that if Φ ∈ ∆2 ∩ ∇2, then the sequence of operators Sn strongly
converges to the operator S in LΦ(T ) and for any ϕ ∈ LΦ(T ) the following estimate holds:

‖Sϕ− Snϕ‖Lφ(T ) ≤
(
‖S‖LΦ(T )→LΦ(T ) + C̃Φ

)
· EΦ

n−1(ϕ), n ∈ N, (6)

where EΦ
n−1(ϕ) – is the best approximation of the function ϕ in the metric LΦ(T ) by

trigonometric polynomials of order at most n− 1.

5. Approximation of the Hilbert transform in Orlicz spaces

Consider the regular integral operator

(Kϕ)(t) =
1

2π

∫ π

−π
K(t, τ)ϕ(τ)dτ, t ∈ [−π, π],

and the sequence of operators

(Knϕ)(t) =
1

n

n−1∑
k=0

K
(
t, t+ π(2k+1)

n

)
ϕ
(
t+ π(2k+1)

n

)
, t ∈ [−π, π], n ∈ N,

where K(t, τ) is a continuous function on [−π, π]2 and K(t, τ) = K(t, τ − 2π) for (t, τ) ∈
[−π, π]× (π, 3π).
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Lemma 1. Let Φ ∈ ∆2 ∩∇2. Then the sequence of operators {Kn} strongly converges to
the operator K in LΦ(T ).

Proof. First assume that K(t, τ) is a 2π - periodic function by τ . Denote

‖K‖∞ = max
t,τ∈[−π,π]

|K(t, τ)|, En(K) = inf ‖K − Φn‖∞,

where Φn(t, τ) = α0(t)
2 +

∑n
m=1(αm(t) cosmτ + βm(t) sinmτ), and infimum is taken over

all trigonometric polynomials αm(t), m = 0, n, βm(t), m = 1, n of order at most n.
Denote n0 =

[
n−1

2

]
. Suppose that

qn0(t) =
a0

2
+

n0∑
m=1

(am cosmt+ bm sinmt)

and

Φ(0)
n0

(t, τ) =
α

(0)
0 (t)

2
+

n0∑
m=1

(α(0)
m (t) cosmτ + β(0)

m (t) sinmτ)

are the best approximations of the functions ϕ and K by trigonometric polynomials of
order at most n0, that is

‖ϕ− qn0‖LΦ
= inf ‖ϕ− Pn0‖LΦ

,

where infimum is taken over all trigonometric polynomials Pn0 of order at most n0 and

‖K − Φ(0)
n0
‖∞ = En(K).

For any trigonometric polynomial rn−1(t) of order at most n− 1, the equality

1

2π

∫ π

−π
rn−1(τ)dτ =

1

n

n−1∑
k=0

rn−1

(
t+ π(2k+1)

n

)
holds. Therefore

(Kϕ)(t)− (Knϕ)(t) = (K−Kn)(ϕ− qn0)(t) +
1

2π

∫ π

−π

[
K(t, τ)− Φ(0)

n0
(t, τ)

]
qn0(τ)dτ

+
1

n

n−1∑
k=0

[
K(t, t+ τ

(n)
k )− Φ(0)

n0
(t, t+ τ

(n)
k )

]
qno(t+ τ

(n)
k ),

where τ
(n)
k = π(2k+1)

n , k ∈ Z. It follows from here and from inequalities

‖K‖LΦ(T )→LΦ(T ) ≤ ‖K‖∞, ‖Kn‖LΦ(T )→LΦ(T ) ≤ ‖K‖∞

that
‖Kϕ−Knϕ‖LΦ(T ) ≤ 2‖K‖∞EΦ

n0
(ϕ) + 2En0(K)

[
‖ϕ‖LΦ(T ) + EΦ

n0
(ϕ)
]
.
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This completes the proof of the lemma in this case. Now consider the general case.
Let ϕ ∈ LΦ(T ) and ε > 0. Since ϕ ∈ LΦ(T ) ⊂ L1(T ), then it follows from Lebesgue

theorem that there exist δ
(0)
ε > 0 such that for any 0 < δ < δ

(0)
ε∫ π

π−δ
|ϕ(τ)|dτ < πε

4(‖K‖∞ + 1)
· Φ−1

(
1

2π

)
.

Denote
K∗(t, τ) = K(t, τ) for (t, τ) ∈ [−π, π]× [−π, π − δε],

K∗(t, τ) = K(t, π − δε) +
τ − π + δε

δε
[K(t,−π)−K(t, π − δε)]

for (t, τ) ∈ [−π, π]× [π − δε, π],

K∗(t, τ + 2π) = K∗(t, τ) for any (t, τ) ∈ [−π, π]× R,

where δε = min
{
δ

(0)
ε , πε

8‖K‖∞‖ϕ‖LΦ(T )
, 1
}

.

Since the function K∗(t, τ) is continuous and 2π-periodic by τ , the sequence of opera-
tors

(K∗nϕ)(t) =
1

n

n−1∑
k=0

K∗(t, t+ τ
(n)
k )ϕ(t+ τ

(n)
k ), t ∈ [−π, π], n ∈ N

strongly converges to the operator

(K∗ϕ)(t) =
1

2π

∫ π

−π
K∗(t, τ)ϕ(τ)dτ

in LΦ(T ).Therefore, the inequality

‖K∗nϕ−K∗ϕ‖LΦ(T ) < ε/2

is satisfied for large values of n. Moreover, since for any t ∈ [−π, π]

|(Kϕ)(t)− (K∗ϕ)(t)| ≤ 1

2π

∫ π

π−δε
|K(t, τ)−K∗(t, τ)||ϕ(τ)|dτ

≤ ‖K‖∞
π

∫ π

π−δε
|ϕ(τ)|dτ < ε

4
· Φ−1

(
1

2π

)
,

then
‖Kϕ−K∗ϕ‖LΦ(T ) ≤

ε

4
.

For n ≥ 16‖K‖∞‖ϕ‖Lp(T )

ε we have

‖Knϕ−K∗nϕ‖LΦ(T ) ≤
1

n
·
( n

2π
· δε + 1

)
· 2‖K‖∞‖ϕ‖LΦ(T ) ≤

ε

4
.

Therefore for sufficiently large values n

‖Knϕ−Kϕ‖LΦ(T )

≤ ‖Knϕ−K∗nϕ‖LΦ(T ) + ‖K∗nϕ−K∗ϕ‖LΦ(T ) + ‖K∗ϕ−Kϕ‖LΦ(T ) < ε.
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Corollary 1. The sequence of operators

(K̃nϕ)(t) =
1

n

∑
{k∈Z:t+τ

(n)
k ∈[−π,π]}

K(t, t+ τ
(n)
k )ϕ(t+ τ

(n)
k ), t ∈ [−π, π], n ∈ N

strongly converges to the operator K in LΦ([−π, π]).

Corollary 2. If the function K(t, τ) is continuous on [πm, πm+ 2πq]× [−π, π], then for
any ϕ ∈ LΦ(T ) the sequence of functions

(K̃nϕ)(t) =
1

n

∑
{k∈Z:t+τ

(n)
k ∈[−π,π]}

K(t, t+ τ
(n)
k )ϕ(t+ τ

(n)
k ), t ∈ [πm, πm+ 2πq],

converges to the function

(Kϕ)(t) =
1

2π

∫ π

−π
K(t, τ)ϕ(τ)dτ, t ∈ [πm, πm+ 2πq]

in LΦ([πm, πm+ 2πq]), where m ∈ Z, q ∈ N.

Corollary 3. If the function K0(t) is continuous on [−π, π], then the sequence of operators

(K0
nϕ)(t) =

1

2n

n−1∑
k=−n

K0

(
π(2k+1)

2n

)
ϕ
(
t+ π(2k+1)

2n

)
, t ∈ [−π, π], n ∈ N

strongly converges to the operator

(K0ϕ)(t) =
1

2π

∫ π

−π
K0(τ)ϕ(t+ τ)dτ, t ∈ [−π, π]

in LΦ(T ).

In the following theorem we prove that for any δ > 0 the sequence of operators
{Hδ/n}n∈N strongly converges to the operator H in LΦ(R).

Theorem 3. Let Φ ∈ ∆2 ∩ ∇2. Then for any δ > 0 the sequence of the operators
{Hδ/n}n∈N strongly converges to the operator H in LΦ(R), that is for any u ∈ LΦ(R) the
following inequality holds:

lim
n→∞

‖Hδ/nu−Hu‖LΦ(R) = 0.

Proof. We have divided the proof into three steps.
Step 1. Let us first prove that the operator

(H∗ϕ)(t) =
1

π

∫ t+π

t−π

ϕ(τ)

t− τ
dτ
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is a bounded operator in LΦ(T ). Indeed, for any ϕ ∈ LΦ(T ) we have

(H∗ϕ)(t) =
1

π

∫ t+π

t−π

ϕ(τ)
t−τ dτ =

1

π

∫ t+π

t−π

[
1
t−τ −

1
2 cot t−τ2

]
ϕ(τ)dτ + (Sϕ)(t)

=
1

2π

∫ π

−π

[
cot τ2 −

2
τ

]
ϕ(t+ τ)dτ + (Sϕ)(t). (7)

Since the function

K0(τ) = cot
τ

2
− 2

τ
for τ 6= 0, K0 = 0

is continuous on [−π, π], then it follows from (7) that the operator H∗ is bounded in
LΦ(T ).

Consider the sequence of operators

(H∗nϕ)(t) =
1

π

n−1∑
k=−n

1
−k−1/2ϕ

(
t+ π(2k+1)

2n

)
, t ∈ [−π, π], n ∈ N.

Since for any ϕ ∈ LΦ(T )

(H∗nϕ)(t) =
1

2n

n−1∑
k=−n

[
cot
(
π(2k+1)

4n

)
− 4n

π(2k+1)

]
ϕ
(
t+ π(2k+1)

2n

)
+ (S2nϕ)(t)

=
1

2n

n−1∑
k=−n

K0

(
π(2k+1)

2n

)
ϕ
(
t+ π(2k+1)

2n

)
+ (S2nϕ)(t),

then it follows from (6) and from Corollary 3 that the sequence of operators H∗n strongly
converges to the operator H∗ in LΦ(T ).

Step 2. Let us prove that the sequence of operators

(Hπ/(4n)u)(t) =
1

π

∑
k∈Z

1
−k−1/2u

(
t+ π(k+1/2)

4n

)
, t ∈ R, n ∈ N

strongly converges to the operator H in LΦ(R). At first assume that supp u ⊂ [−π/4, π/4].
Denote by ϕ 2π-periodic function, coinciding with the function u on [−π/4, π/4] and equal
to zero in [−π, π] \ [−π/4, π/4]. Since for any t ∈ [−π/2, π/2]

(Hu)(t) =
1

π

∫ π/4

−π/4

u(τ)
t−τ dτ = (H∗ϕ)(t), (8)

(Hπ/nu)(t) =
1

π

n−1∑
k=−n

1
−k−1/2u

(
t+ π(k+1/2)

n

)

=
1

π

n−1∑
k=−n

1
−k−1/2ϕ

(
t+ π(k+1/2)

n

)
= (H∗nϕ)(t), (9)
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and the sequence of operators H∗n strongly converges to the operator H∗ in LΦ(T ), then
it follows from (8) and (9) that for any ε > 0 for large values of n

‖Hπ/nu−Hu‖LΦ([−π/2,π/2]) = ‖H∗nϕ−H∗ϕ‖LΦ([−π/2,π/2])

≤ ‖H∗nϕ−H∗ϕ‖LΦ(T ) < ε. (10)

Due to the inequalities

|(Hu)(t)| ≤ 1

π

∫ π/4

−π/4

∣∣∣∣ u(τ)

t− τ

∣∣∣∣ dτ ≤ ‖u‖L1([−π/4,π/4])

π(|t| − π/4)
, |t| > π/4,

|(Hπ/nu)(t)| ≤ 1

π

∑
k∈Z(t)

(n)

1

|k + 1/2|

∣∣∣u(t+ π(k+1/2)
n

)∣∣∣
≤ 1

n(|t| − π/4)

∑
k∈Z(t)

(n)

∣∣∣u(t+ π(k+1/2)
n

)∣∣∣ , |t| > π/4,

where Z(t)
(n) = {k ∈ Z : t+ π(k+1/2)

n ∈ [−π/4, π/4]}, we get that for any M > 2π

‖Hu‖LΦ([M,∞)) ≤
‖u‖L1([−π/4,π/4])

π
· ‖f0‖LΦ([M,∞)),

where f0(t) = 1
t−π/4 ∈ LΦ([M,∞)),

‖Hπ/nu‖LΦ([M,∞)) ≤
1

n(M − π/4)

∥∥∥∥∥∥∥
∑
k∈Z(t)

(n)

∣∣∣u(·+ π(k+1/2)
n

)∣∣∣
∥∥∥∥∥∥∥
LΦ([M,∞))

≤ 1

n(M − π/4)
· n · ‖u‖LΦ([−π/4,π/4]) =

‖u‖LΦ([−π/4,π/4])

M − π/4
Similar inequalities holds for ‖Hu‖LΦ((−∞,−M ]) and for ‖Hπ/nu‖LΦ((−∞,−M ]). There-

fore, for any ε > 0 there exist m0 ≥ 4 such that

‖Hu‖LΦ(R\[−πm0
2
,
πm0

2
]) < ε, ‖Hπ/nu‖LΦ(R\[−πm0

2
,
πm0

2
]) < ε. (11)

Since the function 1
t−τ is continuous on a rectanhle [2π, 2πm0]× [−π, π], then it follows

from Corollary 2 that the sequence of functions

(Wnϕ)(t) =
2

n

∑
{k∈Z:t+

π(2k+1)
n

∈[−π,π]}

ϕ(t+π(2k+1)/n)
−π(2k+1)/n

=
1

π

∑
{k∈Z:t+

π(2k+1)
n

∈[−π,π]}

ϕ(t+π(2k+1)/n)
−k−1/2 , n ∈ N
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converges to the function

(Wϕ)(t) =

∫ π

−π

ϕ(τ)

t− τ
dτ

in LΦ([2π, 2πm0]). Denote by ψ the function, defined on [−π, π] by the equality ψ(τ) =
u(τ/4). Then it follows from the equations

(Hu)(t) =
1

π

∫ π/4

−π/4

u(τ)

t− τ
dτ =

1

π

∫ π

−π

u(τ/4)

4t− τ
dτ = (Wψ)(4t), t ∈ [π/2, πm0/2],

(Hπ/(4n)u)(t) =
1

π

∑
k∈Z(t)

(4n)

u(t+π(k+1/2)/4n)
−k−1/2

=
1

π

∑
k∈Z(t)

(4n)

ψ(4t+π(k+1/2)/n)
−k−1/2 = (Wnψ)(4t), t ∈ [π/2, πm0/2],

that the sequence of functionsHπ/(4n)u converges to the functionHu in the space LΦ([π/2, πm0/2]).
Therefore, for large values of n

‖Hπ/(4n)u−Hu‖LΦ([π/2,πm0/2]) < ε. (12)

Similarly, for large values on n

‖Hπ/(4n)u−Hu‖LΦ([−πm0/2,−π/2]) < ε. (13)

It follows from (10)-(13) that in the case supp u ⊂ [−π/4, π/4]

lim
n→∞

‖Hπ/(4n)u−Hu‖LΦ(R) = 0. (14)

Now suppose that supp u ⊂ [−πm/4, πm/4] for some m ∈ N . Denote by u0 the
function, defined on [−π/4, π/4] by the equatin u0(t) = u(mt). Then for any t ∈ R

(Hu)(t) =
1

π

∫ πm/4

−πm/4

u(τ)

t− τ
dτ =

1

π

∫ π/4

−π/4

u(mτ)

t− τ
mdτ = (Hu0)(t/m),

(Hπ/(4n)u)(t) =
1

π

∑
{k∈Z:t+

π(k+1/2)
4n

∈[−πm
4
,πm

4
]}

u(t+π(k+1/2)/4n)
−k−1/2

=
1

π

∑
k∈Z(t/m)

(4mn)

u0(t/m+π(k+1/2)/(4mn))
−k−1/2 = (Hπ/(4mn)u0)(t/m).

Since equation (14) holds for u0, we obtain that

lim
n→∞

‖Hπ/(4n)u−Hu‖LΦ(R) = m1/p lim
n→∞

‖Hπ/(4mn)u0 −Hu0‖LΦ(R) = 0.
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Now consider the general case. Let us prove that equation (14) holds for any u ∈
LΦ(R). For any u ∈ LΦ(R) and ε > 0 there exist m ∈ N such that

‖u− um‖LΦ(R) < ε, (15)

where um(t) = u(t) ·χ[−πm/4,πm/4](t). Since equation (14) holds for um, and it follows from
(3), (15) that

‖Hπ/(4n)(u− um)−H(u− um)‖LΦ(R)

≤
[
‖Hπ/(4n)‖LΦ(R)→LΦ(R) + ‖H‖LΦ(R)→LΦ(R)

]
· ‖u− um‖LΦ(R)

≤ ε ·
[
CΦ + ‖H‖LΦ(R)→LΦ(R)

]
,

then we get that the equation (14) also holds for the function u.

Step 3. Let us prove that for any δ > 0 the secuence of the operators {Hδ/n}n∈N
strongly converges to the operator H in LΦ(R). Let u ∈ LΦ(R). Denote w(t) = u(4δt/π),
t ∈ R. Then for any t ∈ R

(Hu)(t) =
1

π

∫
R

u(τ)
t−τ dτ =

1

π

∫
R

w(πτ/(4δ))
t−τ dτ

=
1

π

∫
R

w(τ)
πt/(4δ)−τ dτ = (Hw)(πt/(4δ)), (16)

(Hδ/nu)(t) =
1

π

∑
k∈Z

u(t+(k+1/2)δ/n)
−k−1/2

=
1

π

∑
k∈Z

w(πt/(4δ)+π(k+1/2)/(4n))
−k−1/2 = (Hπ/(4n)w)(πt/(4δ)). (17)

Since limn→∞ ‖Hπ/(4n)w −Hw‖LΦ(R) = 0, then it follows from (16), (17) that

lim
n→∞

‖Hδ/nu−Hu‖LΦ(R) = 0.
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