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Asymptotic Behavior of Eigenvalues of a Boundary Value
Problem for Laplace Equation

B.A. Aliev , T.M. Huseynova*

Abstract. In the square Ω = (0, 2π)× (0, 2π) we consider a spectral boundary value problem for
the Laplace equation in the case when one of the boundary conditions contain mixed derivatives
on the line x = 2π, when y ∈ [0, 2π].
It is shown that the considered spectral problem has two series of eigenvalues one of which is finite,

the another one asymptotically behaves as λn,k ∼ k2 + n2

4 (k, n→ ∞).
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1. Introduction

It is known that in the bounded domain there exist spectral problems for the Laplace
equation (for example, first, second, third) in which eigenvalues are nonnegative, discrete
and have a unique limit point +∞. It this case, it is customary to say that eigenvalues of
spectral boundary value problems for the Laplace equation behave as classic. These exist
spectral boundary value problems for the Laplace equation in which the classic nature of
eigenvalues is violated. Non-classic nature of eigenvalues of boundary value problems for
the Laplace equation appear mainly in two moments:

I. Boundary conditions contain a linear operator (differential or non-differential)

II. One and the same spectral parameter is involved in the equation and in the boundary
conditions.

We cite some papers where the classic nature of the eigenvalues of boundary value
problems for the Laplace equation is violated.

In [1] V.A. Il’in and A.F. Filippov consider such a spectral problem for the Laplace
equation where any point on the positive axis is a condensation point, i.e. classic nature
of eigenvalues is violated. In this paper, one of the boundary conditions contains a non-
differential operator.
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In S.Ya. Yakubov is work [2], asymptotic behavior of eigenvalues of the following
boundary value problems is studied for the Laplace equation in the square Ω = (0, 2π)×
(0, 2π), containing in one of the boundary conditions the differential operator.

−∂
2u

∂x2
− ∂2u

∂y2
= λu (x, y) , (1)

u(0, y) = 0,
∂u (2π, y)

∂x
+ i

∂u (2π, y)

∂y
= 0, y ∈ [0, 2π] , (2)

u(x, 0) = u(x, 2π),
∂u (x, 0)

∂y
=
∂u (x, 2π)

∂y
, x ∈ [0, 2π] (3)

It is proved that for boundary value problems (1)- (3) there exists a sequence of eigenvalues
{λk} convergent to zero. More exactly, the classic case on the behavior of eigenvalues for
the boundary value problems (1)-(3) is violated .

In A.N. Kozhevnikov’s work [3], in the boundary domain. .Ω ∈ Rn with a rather
smooth boundary Γ for the Laplace equation the following spectral problem is studied:

−∆u = λu in Ω, (4)

−u = λ
∂u

∂ν
in Γ, (5)

where λ is a spectral parameter, ν is an interior normal to the boundary Γ. It is proved that
the spectrum of the boundary value problem (4), (5) is discrete and consists of two series
of eigenvalues convergent to zero and to +∞ , respectively. More exactly, the eigenvalues
of spectral boundary value problem (4), (5) behave as non- classic .

It is known that many boundary value problems for the Laplace equation given in
a rectangle are reduced to spectral boundary value problems for second order elliptic
differential operator equations in some Hilbert space.

Usually, in spectral problems for elliptic differential operator equations, the operator
appearing in the equation is an operator with a discrete spectrum, the eigenevalues of which
form a complete orthonormal basis in the same Hilbert space. After spectral expansion in
eigenelements of the operator appearing in the equation, the spectral problem stated for
elliptic differential operator equations is reduced to a spectral boundary value problem for
ordinary differential equations with respect to Fourier coefficients.

In the present paper, using the above method we study asymptotic behavior of eigen
values of the following boundary value problems for a two-dimensional Laplace equation
in the square Ω = (0, 2π)× (0, 2π) :

−∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= λu (x, y) , (6)

u(0, y) = 0, u (2π, y) + i
∂2u(2π, y)

∂y∂x
= 0, y ∈ [0, 2π] , (7)
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u(x, 0) = u (x, 2π) ,
∂u(x, 0)

∂y
=
∂u(x, 2π)

∂y
, x ∈ [0, 2π] . (8)

where i is an imaginary number.
It is proved that the eigenvalues of boundary value problem (6)-(8) are real. Then it is

shown that problem (6)-(8) has two series of eigenvalues one of which consist of a finitely
many numbers, more exactly of six eigenvalues satisfying the inequality : k2 − 1 < λk <
k2, k = 1, ..., 6; the another one behaves as λn,k ∼ k2+ n2

4 ; k, n ∈ N . In other works, the
classicsum of eigenvalues of or boundary value problems (6)-(8) is violeted.

By the above [4-7] studies asymptotic behavior of eigenvalues of boundary values prob-
lems for second order elliptic differential operator equations in the case one and the same
spectral parameter is involved in the equation and in the boundary condition. It is proved
that in [4-7] the eigenvalues of the problem under consideration behave with non-classic
asymptotics.

2. Asymptotic formulas for eigenvalues

Definition 1. Am eigenfunctions of the problem (6)-(8) is a identically non-zero function
u(x, y) ∈ C(2)

(
Ω
)
that on the boundary Ω satisfy boundary conditions (7), (8) and for some

λ satisfies on Ω the equation (6). The values of λ for which there exist eigenfunctions, are
called eigenvalues of problem (6)-(8).

Lemma 1. The eigenvalues of the boundary value of problem (6)-(8) are real.

Proof. In Hilbert space L2 (0, 2π) we consider the operators A and B, determined by
the following equalities:

D(A) :=W 2
2

(
(0.2π) , u (0) = u (2π) , u′ (0) = u′ (2π)

)
, Au = −d

2u

dy2
;

D(B) :=W 1
2 ((0, 2π) ; u(0) = u (2π)) , Bu = i

du

dy
.

The eigenvalues of the operator A are the numbers µk(A) = k2, k = 0, 1, ...∞ that for
k > 0 correspond to the pair of eigenfunctions

uk1(y) =
1√
2π
eiky, uk2(y) =

1√
2π
e−iky, k = 1, 2, ...∞.

The eigenvalues µk(B) = −k, k = 0, 1, ...,∞ correspond to the pair of eigenfunction
uk1(y), the eigenvalues µ−k(B) = k, k = 1, 2, ...,∞, correspond to the eigenfunctions
uk2(y).

The problem (6)-(8) is equivalent to the problem

−u′′(x) +Au(x) = λu(x), x ∈ (0, 2π) , (9)

u(0) = 0, u (2π) +Bu′ (2π) = 0, (10)
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where u(x) is a vector function with the values from L2 (0, 2π). It is known that the
system {uk1 (y) , uk2 (y)} k = 1,∞ forms a complete orthonormed basis in L2 (0, 2π).
Then almost everywhere on (0, 1) any element u(x) ∈ L2 (0, 2π) expands in Fourier series:

u(x) =

∞∑
k=1

[(u(x), uk1)uk1 + (u(x), uk2) uk2)] .

If Au(x) ∈ L2 (0, 2π) , u
′′(x) ∈ L2 (0, 2π), then almost everywhere on (0, 2π) we have the

expansion

Au(x) =

∞∑
k=1

k2 [(u(x), uk1)uk1 + (u(x), uk2)uk2] ,

u′′(x) =

∞∑
k=1

[(
u′′(x), uk1

)
uk1 +

(
u′′(x), uk2

)
uk2

]
.

If u(x) ∈ D (B), then almost everywhere on (0, 2π) we have the expansion

u(x) =
∞∑
k=1

[−k (u(x), uk1)uk1 + k (u(x), uk2)uk2] .

Taking into account these spectral expansions in problem (9), (10) for the Fourier
coefficients ũk1(x) = (u(x), uk1) we obtain the problem

−ũ′′k1 + k2ũk1(x) = λũk1(x), x ∈ (0, 2π) , (11)

ũk1 (0) = 0, ũk1 (2π)− kũ′k1(2π) = 0, (12)

and for the coefficients ũk2(x) = (u(x), uk2) we obtain the boundary value problem

−ũ′′k2(x) + k2ũk2(x) = λũk2(x), x ∈ (0, 2π) , (13)

ũk2 (0) = 0, ũk2 (2π) + kũ′k2(2π) = 0. (14)

Thus, the study of eigenvalues of boundary value problems (6)-(8) is reduced to the study
of eigenvalues of boundary value problems (11), (12) and (13), (14).

We show that the eigenvalues of problem (11), (12) are real.
Muitiplying the equation (11) by the function ũk1 (x) and integrating on the interval

(0, 2π) , we obtain the equality

−
∫ 2π

0
ũ′′k1 (x) ũk1 (x) dx+ k2

∫ 2π

0
|ũk1 (x)|2 dx = λ

∫ 2π

0
|ũk1 (x)|2 dx.

Integrating by parts, we obtain :

−ũk1 (2π) ũ′k1 (2π) + ũk1 (0) ũ
′
k1 (0) +

∫ 2π

0

∣∣ũ′k1 (x)∣∣2 dx+
+k2

∫ 2π

0
|ũk1 (x)|2 dx = λ

∫ 2π

0
|ũk1 (x)|2 dx. (15)
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Using boundary conditions (12) from equality (15) we obtain

−1

k
|ũk1 (2π)|2 +

∫ 2π

0

∣∣ũ′k1 (x)∣∣2 dx+ k2
∫ 2π

0
|ũk1 (x)|2 dx = λ

∫ 2π

0
|ũk1 (x)|2 dx.

Hence it follows that the eigenvalues of problem (11), (12) are real. ◀

In a similar way it is shown that the egienvalues of boundary value problem (13), (14)
are also real.

Lemma 1 is proved.

Obviously, there must be λ ̸= k2. Since for λ = k2 problem (11), (12) has only a trivial
solution .

Theorem 1. Boundary value problem (6)-(8) has two series of eigenvalues one of which
is a finite sequence satisfying the inequality k2 − 1 < λk < k2, k = 1, 6, and the another
one behaves asymptotically as λn,k ∼ k2 + n2

4 for k, n→ ∞.

Proof. The general solution of ordinary differential equation (11) is in the form

ũk1(x) = c1e
−x

√
k2−λ + c2e

−(2π−x)
√
k2−λ, (16)

where ci (i = 1, 2) are arbitrary constants .

Having substituted (16) in (12), we obtain a system with respect to ci (i = 1, 2), whose
determinant is of the form :

Dk (λ) =
(
k
√
k2 − λ+ 1

)
e−4π

√
k2−λ −

(
k
√
k2 − λ− 1

)
.

The eigenvalues of boundary value problem (11), (12) consist of real λ ̸= k2, that even if
for one k satisfy the transcendental equation:(

k
√
k2 − λ+ 1

)
e−4π

√
k2−λ −

(
k
√
k2 − λ− 1

)
= 0. (17)

Equation (17) is equivalent to the equation

k
√
k2 − λch

(
2π

√
k2 − λ

)
− sh

(
2π

√
k2 − λ

)
= 0. (18)

Let us write equation (18) in the form

k
√
k2 − λ− th

(
2π

√
k2 − λ

)
= 0. (19)

We find the eigenvalues of boundary value problem (11), (12) for which λ < k2, k ∈ N .
Let us put to equation (19), 2π

√
k2 − λ = y (0 < y < 2πk). Then equation (19) takes the

form

thy − k

2π
y = 0, 0 < y < 2πk, k = 1, 2, ...∞. (20)
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We note that the roots of equation (20) are the abscissa of intersection point of the
graphs of the function fk(y) = thy, y ∈ (0, 2πk) and gk(y) = k

2πy, y ∈ (0, 2πk) , k =
1, 2, ...∞.

Show that for each fixed k = 1, 6 the equation (20) has a unique solution. Indeed,
since the angular coefficient of the tangent drawn to the curve fk(y) = thy, y ∈ (0, 2πk),
k = 1.∞ at the point y = 0 equals 1, and the angular coefficient of the straightline
gk(y) = k

2πy, y ∈ (0, 2πk) , is less than 1, only for k = 1, 6. Consequently, the graphs
of these functions may intersect for k = 1, 6. For k = 7, 8, ...,∞ the angular coefficient
of the straightline gk(y) =

k
2πy, y ∈ (0, 2πk) is greater than a unit, therefore we confirm

that the graph of the functions fk(y) = thy, y ∈ (0, 2πk) and gk(y) =
k
2πy, y ∈ (0, 2πk)

can not intersect for k = 7, 8, ...,∞. Obviously, the intersection points of these functions
are located in the open rectangle (0, 2π)× (0, 1).

Consequently, the abscissa of the intersection points of the curve fk(y) = thy, y ∈
(0, 2πk), and of the straightline gk(y) =

k
2πy, y ∈ (0, 2πk) for k = 1, 6 are located in the

interval (0, 2π).
Let us consider the functions

φk(y) = thy − k

2π
y, 0 < y < 2π , k = 1, 6. (21)

For a rather small ε > 0 we have

φk(ε) = thε− k

2π
ε > 0,

since for small ε > 0, thε ∼ ε.

φk(2π) = lim
y→2π−0

(
thy − k

2π
y

)
= th2π − k < 0,

since for any y > 0, 0 < thy < 1. In what follows, by virtue of the Cauchy theorem
on the zeros of a continuous function, for each k = 1, 6 the function φk(y), determined
by formula (21) has a unique zero belonging to the interval (0, 2π). The uniquesness of
zeros of the function φk(y) for each k = 1, 6 follows from the fact that the function fk(y),
y ∈ (0, 2π) and the staightline gk(y) =

k
2πy, y ∈ (0, 2π) are monotonically increasing. We

denote the zeros of the function φk(y) by yk: 0 < yk < 2π, k = 1, 6. Consequently, for
each k = 1, 6, 0 < 2π

√
k2 − λ < 2π. Hence, for each k = 1, 6 we have

λk > k2 − 1.

On the other hand, we consider such eigenvalues λ, for which λk < k2. As a result, for
the eigenvalues of boundary value problem (11), (12) satisfying the inequality λ < k2, we
have

k2 − 1 < λk < k2, k = 1, 6.

We now find the eigenvalues of boundary value problems (11), (12) for which λ > k2.
We put in equation (18) 2π

√
λ− k2 = z, 0 < z < +∞. Then equation (18) takes the form

k

2π
z cos z − sin z = 0, z ∈ (0,+∞) . (22)
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Let z ̸= nπ, n ∈ N . In this case equation (22) is equivalent to the equation

zctgz − 2π

k
= 0, z ∈ (0,+∞) , z ̸= nπ, n ∈ N. (23)

Let us consider the function

ψk(z) = zctgz − 2π

k
, z ∈ (0,+∞) , z ̸= nπ, n ∈ N.

Since at each interval (nπ, (n+ 1)π) , n ∈ N the function ψk(z) accepts the values from
−∞ to +∞, and its derivative

ψ′
k(z) =

sin 2z − 2z

2 sin2 z
< 0,

then n the given interval for each k,the function ψk(z) has only one zero znk: nπ < zn,k <
(n+ 1)π, n ∈ N. For each k ∈ N we find asymptotic formulas for zn,k, as n→ ∞. From
equation (23) we have

ctgz =
2π

kz
, z ∈ (0,+∞) , z ̸= nπ, n ∈ N. (24)

Obviously, the points zn,k are the abscissa of the interaction of the graphs of the function
qk(z) =

2π
kz , z ∈ (0,+∞) , k ∈ N and branches of the function ctgz.More exactly , zn,k are

approximate solutions of equation (23) . From the location of graphs of these functions it
is clear that for each k, with increasing n, the points zn,k will approach the points nπ, i.e.,
zn,k ∼ nπ.

Hence and from the equality 2π
√
λ− k2 = z for the eigenvalues of boundary value

problem (11), (12) satisfying the condition λ > k2, we have the formula: λn,k ∼ k2 + n2

4 .

We now study boundary value problem (13), (14). In the same way we show that the
eigenvalues of boundary value problems (13), (14) are also real, and λ = k2, k ∈ N is not
an eigenvalue.

The general solution of ordinary differential equation (13) is of the form

ũk2(x) = c1e
−x

√
k2−λ + c2e

−(2π−x)
√
k2−λ, (25)

where ci (i = 1, 2) are arbitrary constants .

Having substituted (25) in (14), we obtain a system with respect to ci (i = 1, 2), whose
determinant is of the form

Fk(λ) =
(
1− k

√
k2 − λ

)
e−4π

√
k2−λ −

(
1 + k

√
k2 − λ

)
.

The eigenvalues of boundary value problem (13), (14) consist of real λ ̸= k2, k ∈ N ,
that for even if one k satisfy the equation

Fk(λ) = 0. (26)
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Equation (26) is equivalent to the equation

k
√
k2 − λ ch

(
2π

√
k2 − λ

)
+ sh

(
2π

√
k2 − λ

)
= 0, (27)

that for λ < k2, k ∈ N has no solutions. Consequently, boundary value problem (13), (14)
has no eigenvalues satisfying the condition λ < k2, k ∈ N .

We now look for the solutions of equation (27) , that are greater than k2. Assume
2π

√
λ− k2 = z, 0 < z < +∞. Then we can write equation (27) in the form

− k

2π
z sin z + cos z = 0, z ∈ (0,+∞) . (28)

Let z ̸= π
2 + nπ, n = 0, 1, ...∞. Then equation (28) is equivalent to the equation

tgz − 2π

kz
= 0, z ∈ (0,+∞) , z ̸= π

2
+ nπ, n = 0, 1, ...∞. (29)

Let us consider the function

ηk (z) = tgz − 2π

kz
, z ∈ (0,+∞) , z ̸= π

2
+ nπ, n = 0, 1, ...∞.

Since at each interval
(
π
(
1
2 + n

)
, π

(
3
2 + n

))
, n = 0, 1, ...∞ the function ηk (z) accepts

the values from −∞ to +∞, and its derivative

η′k (z) =
1

cos2 z
+

2π

k
> 0, z ∈ (0,+∞) ,

then in it ηk (z) for each k has only one zero znk: π
(
1
2 + n

)
< zn,k < π

(
3
2 + n

)
,

n = 0, 1, 2, ...∞. For each k ∈ N we find asymptotic formulas for znk, as n→ +∞.

Obviously, the points zn,k are the abscissa of the intersection of the function qk (z) =
2π
kz , z ∈ (0,+∞) , k ∈ N and branches of the function tgz, i.e. zn,k is approximate solution
of the equation (29). From the location of the graps of these functions it is clear that for
each k, with increasing n, the point znk will approach the point nπ, i.e., znk ∼ nπ. Hence
and from the equality 2π

√
λ− k2 = z for the eigenvalues of the boundary value problem

(13), (14) satisfying the condition λ > k2 we have the asymptotic formula λn,k ∼ k2 + n2

4 .
◀

The Theorem 1 is proved .
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