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Abstract. In this paper we study some initial-boundary value problem for partial differential
equation of fourth order subject the nonclassical boundary conditions. We show the existence,
uniqueness and stability of the classical solution of this problem.
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1. Introduction

Let T ∈ R be the positive constant and DT = {(x, t) ∈ R2 : 0 < x < 1, 0 < t < T}.
We consider the following initial-boundary value problem for partial differential equa-

tion

(p (x)ux,x(x, t))x,x − (q(x)ux(x, t))x + r(x)utt(x, t) = f(x, t), (x, t) ∈ DT , (1)

subject the non-local conditions

u(x, 0) + δ1u(x, T ) = φ(x), ut(x, 0) + δ2u(x, T ) = ψ(x), 0 ≤ x ≤ 1, (2)

and non-classical boundary conditions

u(0, t) = µ1(t), 0 ≤ t ≤ T, (3)

uxx(0, t) = µ2(t), 0 ≤ t ≤ T, (4)

p (1)uxx(1, t) + ux(1, t) = µ3(t), 0 ≤ t ≤ T, (5)

(p (x)uxx(x, t))x|x=1 − q(1)ux(1, t)− r(1)utt(1, t) = µ4(t), 0 ≤ t ≤ T, (6)
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where δi, i = 1, 2, are nonnegative constants, p ∈ C2([0, 1]; (0,+∞)), q ∈ C1([0, 1]; (0,+∞)),
r ∈ C([0, 1]; (0,+∞)), µi ∈ C1([0, T ];R), i = 1, 2, 3, 4, φ,ψ ∈ C4([0, 1];R), f ∈ C0,1(DT )
is a given function and u(x, t) is the desired function. Moreover, the following conditions
hold:

µ1(0) + δ1µ1(T ) = φ(0), µ′1(0) + δ2µ
′
1(T ) = ψ(0),

µ2(0) + δ1µ2(T ) = φ′′(0), µ′2(0) + δ2µ
′
2(T ) = ψ′′(0),

µ3(0) + δ1µ3(T ) = p (1)φ′′(1) + φ′(1), µ′3(0) + δ2µ
′
3(T ) = p (1)ψ′′(1) + ψ′(1),

µ4(0) + δ1µ4(T ) = (p (x)φ′′(x))′ |x=1 − q(1)φ′(1)− (f(1, 0) + δ1f(1, T )) +(
(p (x)φ′′(x))′′ − (q(x)φ′(x)

)′ |x=1 ,

µ′4(0) + δ2µ
′
4(T ) = (p (x)ψ′′(x))′ |x=1 − q(1)ψ′(1) + (ft(1, 0) + δ2ft(1, T ))+

+ ((p (x)ψ′′(x))′′ − (q(x)ψ′(x))′ |x=1 .

Problem (1)-(6) describes the small bending vibrations of a non-homogeneous rod, the
left end of which is elastically fixed, and at the right end the mass is concentrated (see,
for example, [6, 9]).

For studying the classical solution of boundary value problems and initial-boundary
value problems for partial differential equations one of the main methods is the Fourier
method. The justification of this method is traditionally based on the uniform convergence
of the series representing the formal solution of the problem and the series obtained by its
term-by-term differentiation the required number of times (see, for example, [3-7, 9, 10,
12-14]). Uniform convergence of the series representing the formal solution of the problem
and obtained from it by term-by-term differentiation is proved using the basic properties
of the corresponding spectral problems.

In this work, using the Fourier method, we prove the existence of a classical solution
to problem (1)-(6), and also prove the uniqueness and stability of this solution.

2. Uniqueness of the solution of the initial-boundary value problem
(1)-(6)

In this section, we prove the uniqueness of the classical solution to the initial-boundary
value problem (1)-(6).

Let

C4,2(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ), uxxxx(x, t) ∈ C(DT )

}
.

The classical solution of problem (1)-(6) is called the function u(x, t) ∈ C4,2(DT )
satisfying equation (1) in DT , conditions (2) in [0, 1] and conditions (3)-(6) in [0, T ] in the
usual sense (see, e.g., [9, 10]).

Theorem 1. Suppose that δ21 + δ22 < 1. Then problem (1)-(6) cannot have more than
one classical solution, i.e. if this problem has a classical solution u(x, t), then it is unique.
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Proof. Suppose that there are two classical solutions u1(x, t) and u2(x, t) of problem
(1)-(6) and let

v(x, t) = u1(x, t)− u2(x, t), (x, t) ∈ DT .

Obviously, the function v(x, t), satisfies the following homogeneous equation

(p(x)vxx(x, t))xx − (q(x)vx(x, t))x + r(x)vtt(x, t) = 0, (x, t) ∈ DT , (7)

and conditions

v(x, 0) + δ1v(x, T ) = 0, vt(x, 0) + δ2vt(x, T ) = 0, 0 ≤ x ≤ 1, (8)

v(0, t) = 0, 0 ≤ t ≤ T, (9)

vxx(0, t) = 0, 0 ≤ t ≤ T, (10)

p (1)uxx(1, t) + ux(1, t) = 0, 0 ≤ t ≤ T, (11)

(p(x)vxx(x, t))x |x=1 − q(1)vx(1, t)− r(1)vtt(1, t) = 0, 0 ≤ t ≤ T. (12)

Multiplying (7) by the function 2vt(x, t) and integrating the resulting equality in the
range from 0 to 1, we obtain

2
1∫
0

(p (x)vxx(x, t))xxvt(x, t)dx− 2
1∫
0

(q(x)vx(x, t))xvt(x, t)dx+

2
1∫
0

r(x)vtt(x, t)vt(x, t)dx = 0.

(13)

Note that

2

1∫
0

r(x)vtt(x, t)vt(x, t)dx =
d

dt

1∫
0

r(x)v2t (x, t)dx, 0 ≤ t ≤ T. (14)

Using the formula for the integration by parts and taking into account conditions (9)-(12)
we get the following relations

2
1∫
0

(p (x)vxx(x, t))xxvt(x, t)dx = 2(p(x)vxx(x, t))x |x=1 vt(1, t)−

2(p (x)vxx(x, t))x |x=0 vt(0, t)− 2
1∫
0

(p (x)vxx(x, t))xvtx(x, t)dx =

2(p (x)vxx(x, t))x |x=1 vt(1, t)− 2
1∫
0

(p (x)vxx(x, t))xvtx(x, t)dx =

2(p (x)vxx(x, t))x |x=1 vt(1, t)− 2p (1)vxx(1, t)vtx(x, 1) + 2p (0)vxx(0, t)vtx(0, t)+

2
1∫
0

p(x)vxx(x, t)vtxx(x, t)dx =2(p (x)vxx(x, t))x |x=1 vt(1, t)−

2p (1)vxx(1, t)vtx(x, 1) +
d
dt

1∫
0

p (x)v2xx(x, t)dx, 0 ≤ t ≤ T.

(15)
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2
1∫
0

(q(x)vx(x, t))xvt(x, t)dx = 2q(1)vx(1, t)vt(1, t)− 2q(0)vx(0, t)vt(0, t)−

−2
1∫
0

q(x)vx(x, t)vtx(x, t)dx = 2q(1)vx(1, t)vt(1, t)− d
dt

1∫
0

q(x)v2x(x, t)dx,

(16)

Then by (14)-(16) it follows from (13) that

d
dt

1∫
0

p (x)v2xx(x, t)dx+ d
dt

1∫
0

q(x)v2x(x, t)dx+ d
dt

1∫
0

r(x)v2t (x, t)dx−

2q(1)vxx(1, t)vtx(1, t) + 2((p (x)vxx(x, t))x − q(x)vx(x, t)) |x=1 vt(1, t) = 0,

d
dt

1∫
0

p (x)v2xx(x, t)dx+ d
dt

1∫
0

q(x)v2x(x, t)dx+ d
dt

1∫
0

r(x)v2t (x, t)dx+

2vx(1, t)vtx(1, t) + 2r(1)vtt(1, t)vt(1, t) = 0, 0 ≤ t ≤ T.

which implies that

d
dt

(
1∫
0

(
p (x)v2xx(x, t) + q(x)v2x(x, t) + r(x)v2t (x, t)

)
dx+v2x(1, t) + r(1)v2t (1, t)

)
= 0.

(17)

Let

z(t) =
1∫
0

(
p (x)v2xx(x, t) + q(x)v2x(x, t) + r(x)v2t (x, t)

)
dx+

v2x(1, t) + r(1)v2t (1, t), 0 ≤ t ≤ T.

(18)

then it follows from (17) that

z′(t) = 0, t ∈ [0, T ],

and consequently,

z(t) = C, t ∈ [0, T ] (19)

where C is some positive constant.

By (8) we get

z(0)− (δ21 + δ22)z(T ) =
1∫
0

r(x)(v2t (x, 0)− (δ21 + δ22)v
2
t (x, T ))dx+

1∫
0

q(x)(v2x(x, 0)− (δ21 + δ22)v
2
x(x, T ))dx+

1∫
0

p (x)(v2xx(x, 0)− (δ21 + δ22)v
2
xx(x, T ))dx+

r(1)(v2t (1, 0)− (δ21 + δ22)v
2
t (1, T )) + v2x(1, 0)− (δ21 + δ22)v

2
x(1, T ) =

−δ21
1∫
0

r(x)v2t (x, T ))dx− δ21

1∫
0

q(x)v2x(x, T ))dx− δ22

1∫
0

p(x)v2xx(x, T ))dx−

− r(1)δ21v
2
t (1, T )− δ22v

2
x(1, T ) = C(1− (δ21 + δ22)) ≤ 0.
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whence, by relations δ21 + δ22 < 1 and C ≥ 0, implies that C = 0. Then in view of (19), by
(18), we obtain

1∫
0

(
p (x)v2xx(x, t) + q(x)v2x(x, t) + r(x)v2t (x, t)

)
dx+ v2x(1, t) + r(1)v2t (1, t) ≡ 0.

Therefore, it follows from last relation that

vt(x, t) ≡ 0, vx(x, t) ≡ 0, vxx(x, t) ≡ 0,

and consequently,
vt(x, t) = B, (x, t) ∈ DT ,

where B is some constant.
In view of (8) we have

v(x, 0) + δ1v(x, T ) = B(1 + δ1) = 0,

which, by δ1 ≥ 0, we get B = 0, i.e.,

v(x, t) ≡ 0 in DT .

The proof of this theorem is complete.

3. Stability of the solution of the initial-boundary value problem (1)-(6)

In this section we prove the stability of the classical solution of the initial-boundary
value problem (1)-(6).

Theorem 2. Let δ1 = δ2 = 0, µi ≡ 0, i = 1, 2, 3, 4, and let the function u(x, t) ∈
C4,2(DT ) solves problem (1)-(6). Then for this function the following inequality holds

1∫
0

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx+ u2x(1, t) + r(1)u2t (1, t) ≤

≤ er0T
{

1∫
0

(
r(x)ψ2(x) + q(x)[φ′(x)]2 + p (x)[φ′′(x)]2

)
dx + [φ′(1)]2+

+ r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

}
.

(20)

Proof. Multiplying both parts of (1) by the function 2ut(x, t) and integrating the
resulting equality by x in the range from 0 to 1, we obtain

2
1∫
0

(p (x)uxx(x, t))xxut(x, t)dx− 2
1∫
0

(q(x)ux(x, t))xut(x, t)dx+

2
1∫
0

r(x)utt(x, t)ut(x, t)dx = 2
1∫
0

f(x, t)ut(x, t)dx

(21)
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It is obvious that

2

1∫
0

f(x, t)ut(x, t)dx ≤
1∫

0

f2(x, t)dx+

1∫
0

u2t (x, t)dx. (22)

By (17) and (22) we get

d
dt

(
1∫
0

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx+ u2x(1, t) + r(1)u2t (1, t)

)
≤

1∫
0

f2(x, t)dx+
1∫
0

u2t (x, t)dx ≤
1∫
0

f2(x, t)dx+
1∫
0

1
r(x)

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx ≤

1∫
0

f2(x, t)dx+ 1
r0

1∫
0

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx, t ∈ [0, T ],

(23)

where r0 = min
x∈[0,1]

r(x).

In view of (18), by (23) we obtain

z′(t) ≤
1∫

0

f2(x, t)dx+ r0z(t), t ∈ [0, T ],

or

d

dt

(
z(t)e−r0t

)
≤ e−r0t

1∫
0

f2(x, t)dx, t ∈ [0, T ].

It follows from last relation that

z(t) ≤ er0T

z(0) +
T∫
0

1∫
0

f2(x, t)dxdt

 , t ∈ [0, T ]. (24)

By initial conditions (2) we have the following relation

z(0) =
1∫
0

(
p (x)u2xx(x, 0) + q(x)u2x(x, 0) + r(x)u2t (x, 0)

)
dx+ u2x(1, 0)+

r(1)u2t (1, 0) =
1∫
0

(
p(x)φ′′2(x) + q(x)φ′2(x) + r(x)ψ2(x)

)
dx+ φ′2(1)+

r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

(25)

Using (25) from (24) we obtain (20). The proof of this theorem is complete.
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Corollary 1. Let q(x) > 0 for x ∈ [0, 1] and let the conditions of Theorem 2 be
satisfied. Then the following inequality holds:

|u(x, t)|2 ≤M

{
1∫
0

(
p (x)φ′′2(x) + q(x)φ′2(x) + r(x)ψ2(x)

)
dx + φ′2(1)+

+ r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

}
, (x, t) ∈ DT ,

where M = er0T
(

1∫
0

dx
q(x)

) 1
2

.

Remark 1. If the function q takes zero values, then we have the following inequality:

|ux(x, t)|2 ≤ D̃

{
1∫
0

(
p (x)φ′′2(x) + q(x)φ′2(x) + r(x)ψ2(x)

)
dx + φ′2(1)+

r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

}
,

4. The existence of a classical solution to problem (1)-(6)

Suppose that f ≡ 0 in DT and µi ≡ 0 in [0, T ] for i = 1, 2, 3, 4. In order to solve
problem (1)-(6) we apply the method of separation of variables. We will sought for a non-
trivial particular solution of equation (1) that satisfies the boundary conditions (3)-(6) in
the following form

u(x, t) = y(x)ϑ(t), x ∈ [0, 1], t ∈ [0, T ]. (26)

Taking (26) into account from (1) we obtain

(p (x)y′′(x))′′ϑ(t)− (q(x)y′(x))′ϑ(t) + r(x)y(x)ϑ′′(t) = 0 (27)

which implies that

(p(x)y′′(x))′′ − (q(x)y′(x))′

r(x)y(x)
= −ϑ

′′(t)

ϑ(t)
= λ, λ ∈ C. (28)

Then the functions y(x) and ϑ(t) will satisfy the following ordinary differential equations

(p (x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < 1, (29)

and
ϑ′′(t) + λϑ(t) = 0, 0 < t < T, (30)

respectively.
By (26) and (28) it follows from (3)-(6) (with the use of conditions µi ≡ 0 in [0, T ] for

i = 1, 2, 3, 4) that

y(0) = 0, y′′(0) = 0, p (1)y′′(1) + y′(1) = 0, T y(1) + λr(1)y(1) = 0,
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where
T y ≡ (py′′)′ − qy′.

Thus, problem (1), (3)-(6) is reduced by the change of variables (26) to the spectral
problem

(p (x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < 1, (31)

y(0) = y′′(0) = y′(1) + p (1)y′′(1) = 0, (32)

T y(1) + λr(1)y(1) = 0. (33)

A more general form of the spectral problem (31)-(33) was considered in [8] (see also [1]),
where the oscillatory properties of eigenfunctions and the basis properties of subsystems
of eigenfunctions in the space Lp (0, 1), 1 < p <∞, were considered.

Remark 2. By [8, Lemma 2.2 and Theorem 2.2] the eigenvalues of problem (31)-
(33) are real and simple and form an infinitely increasing sequence {λk}∞k=1. Moreover,
multiplying both parts of (31) by y and integrating the resulting relation in the range
from 0 to 1 (using integration by parts) and taking the boundary conditions (32), (33)
into account we obtain

1∫
0

{
p (x)y′′2(x) + q(x)y′2(x)

}
dx+

1

p (1)
y′2(1) = λ


1∫

0

r(x)y2(x)dx+ r(1)y2(1)


whence, by the first condition in (32), implies that the eigenvalues of problem (31)-(33)
are positive, i.e., λk > 0 for any k ∈ N.

Remark 3. It follows from [8, formulas (3.3) and (3.4)] that

4
√
λk =

(k − 1)π

γ
+O

(
1

k

)
, (34)

yk(x) = sin (k−1)πx
γ − cos (k−1)πx

γ − e
− (k−1)πx

γ +

(−1)ke
(k−1)π (x−1)

γ +O
(
1
k

)
,

(35)

where relation (35) holds uniformly for x ∈ [0, 1] and

γ =

1∫
0

(
r(x)

p (x)

)1/4

dx.

Remark 4. Let s be an arbitrary fixed natural number. Then, by [8, Theorem 5.1],
the system {yk}∞k=1, k ̸=s of eigenfunctions of problem (31)-(33) forms a basis in the space
Lp ((0, 1); r), 1 < p < ∞, which is an unconditional basis in L2((0, 1); r). Moreover, it
follows from the proof of [8, formula (4.3)] that each element vk of the system {vk}∞k=1, k ̸=s

conjugate to the system {yk}∞k=1, k ̸=s is defined as follows:

vk(x) = δ−1
k

{
yk −

yk(1)

ys(1)
ys(x)

}
, (36)
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where

δk =

1∫
0

r(x)y2k(x)dx+ r(1)y2k(1) > 0.

Remark 5. In view of [8, Lemma 4.1 and relations (4.11)] we have the following
relation

vk(x) = yk(x) +O

(
1

k

)
. (37)

||yk||22, r = 1 +O

(
1

k

)
and yk(1) = O

(
1

k

)
, (38)

where || · ||2, r is the norm in L2((0, 1); r).
Let H = L2((0, 1); r)⊕ C be the Hilbert space with inner product

(û, v̂)H = ({y,m}, {v, n})H =

1∫
0

r(x)y(x)v(x) dx+ r(1)−1ms̄ , (39)

We define the linear operator L : D(L) ⊂ H → H as follows:

Lŷ = L{y,m} =

{
1

r(x)
(T y(x))′ ,−T y(1)

}
,

where
D(L) = {{y (x), m} : y ∈W 4

2 (0, 1),
1

r(x) (T y(x))
′ ∈ L2(0, 1),

y(0) = y′′(0) = y′(0) + p (1)y′′(1) = 0, m = r(1)y(1)}

which is everywhere in H (see [1]). Then problem (31)-(33) is equivalent to the spectral
problem

Lŷ = λŷ, ŷ ∈ D(L), (40)

i.e., the eigenvalues λk, k ∈ N, of problems (31)-(33) and (39) coincide (counting multi-
plicities), and there exists a one-to-one correspondence between the their eigenfunctions,

yk(x) ↔ {yk(x), mk}, mk = r(1)yk(1).

Since r is positive on [0, 1], the operator L is a self-adjoint discrete lower-semibounded
in H and hence the system of eigenvectors {ŷk}∞k=1 of this operator forms an orthogonal
basis in H (see [1]).

For any k, n ∈ N, k ̸= n, we have

(ŷk, ŷn) = 0,

and consequently,

1∫
0

r(x)yk(x)yn(x)dx+ r(1)yk(1)yn(1) = 0 for any k, ∈ N, k ̸= n. (41)
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Note that yk(1) ̸= 0 for any k ∈ N. Indeed, if yk(1) = 0 for some k ∈ N, then it
follows from (33) that Tyk(1) = 0. Moreover, due to the third condition in (32) we have
y′(1)y′′(1) < 0. Then by the second part of Lemma 2.1 of [2] we get y′(0)y′′(0) < 0 in
contradiction the second condition in (32).

Let k0 be the arbitrary fixed positive integer. Then by (41) we have

1∫
0

r(x)yk(x)yk0(x)dx+ r(1)yk(1)yk0(1) = 0 for any k ∈ N, k ̸= k0,

which implies that

r(1)yk(1) +
yk0(1)

1∫
0

r(x)yk(x)yk0(x)dx = 0 for any k ∈ N, k ̸= k0, (42)

Thus, by (42), λk, k ∈ N, k ̸= k0, are eigenvalues and yk, k ∈ N, k ̸= k0, are
corresponding eigenfunctions of the following spectral problem

(p (x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < 1,

y(0) = y′′(0) = y′(1) + p (1)y′′(1) = 0,

r(1)y(1) + 1
yk0 (1)

1∫
0

r(x)y(x)yk0(x)dx = 0.

(43)

Note that, unlike problem (31)-(33), problem (43) does not contain a spectral parameter
in the boundary conditions.

By first relation of (38), without loss of generality, we can assume that the functions yk,
k ∈ N, are normalized in L2((0, 1); r). Then, by Remark 4.3, the system {yk(x)}∞k=1, k ̸=k0
forms a Riesz basis in the space L2((0, 1); r). In this case the system {vk(x)}∞k=1, k ̸=k0

,
where

vk(x) = δ−1
k

{
yk −

yk(1)

yk0(1)
yk0(x)

}
,

is conjugate to the system {yk(x)}∞k=1, k ̸=k0
. Hence for any function g ∈ L2((0, 1); r) we

have

g =

∞∑
k=1,k ̸=k0

gkyk(x), (44)

where

gk =
1∫
0

r(x)g(x)vk(x)dx = δ−1
k

1∫
0

r(x)g(x)yk(x)dx

− δ−1
k

yk(1)
yk0 (1)

1∫
0

r(x)g(x)yk0(x)dx.

(45)
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Let the following conditions hold:

g(x), g′(x), g′′(x), T g(x) ∈ C[0, 1], g(0) = 0, g′′(0) = 0, g′(1) + p (1)g′′(1) = 0,

J(g) = r(1)g(1) +
1

yk0(1)

1∫
0

r(x)g(x)yk0(x)dx = 0 and
1

r(x)
(T g(x))′ ∈ L2(0, 1).

For any g ∈ D(L) we have

(Lŷk, ĝ) = λk(ŷk, ĝ), k ∈ N,

whence, by (39), we get

λk

1∫
0

r(x)yk(x)g(x)dx + λkr(1)yk(1)g(1) = λk(ŷk, ĝ)H = (Lŷk, ĝ)H =

(
ŷk, Lĝ

)
H

=

1∫
0

yk(x)(Tg(x))
′dx− yk(1)Tg(1), k ∈ N.

Thus, for any g ∈ D(L) we obtain

λk

1∫
0

r(x)yk(x)g(x)dx = −λkr(1)yk(1)g(1)− yk(1)Tg(1) +

1∫
0

yk(x)(Tg(x))
′dx, k ∈ N.

whence implies that

λk0
yk(1)

yk0(1)

1∫
0

r(x)yk0(x)g(x)dx = −λk0r(1)yk(1)g(1)− yk(1)Tg(1)+

yk(1)

yk0(1)

1∫
0

r(x)yk0(x)(Tg(x))
′dx, k ∈ N.

It follows from two last relations that

λk

1∫
0

r(x)g(x)

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
dx + (λk − λk0)

yk(1)

yk0(1)

1∫
0

r(x)yk0(x)g(x)dx =

−(λk − λk0)r(1)yk(1)g(1) +

1∫
0

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
(T g)′(x)dx,
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and consequently,

λk

1∫
0

r(x)g(x)

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
dx =

−(λk − λk0)yk(1)

r(1)g(1) + 1

yk0(1)

1∫
0

r(x)yk0(x)g(x)dx

+

1∫
0

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
(T g)′(x)dx.

Since J(g) = 0 we have the following relation

1∫
0

r(x)g(x)vk(x)dx =
1

λk

1∫
0

(T g)′(x)vk(x)dx.

Lemma 1. Let the conditions g ∈ C3[0, 1], g ∈ W 4
2 (0, 1), g(0) = g′′(0) = g′(1) +

p (1)g′′(1) = 0 and J(g) = 0 be satisfied. Then the following relation holds:

gk = λ− 1
k gk,1,

where

gk,1 =

1∫
0

r(x)G(x)vk(x)dx, G(x) =
(T g)′(x)
r(x)

, x ∈ [0, 1].

Corollary 2. Let the conditions of Lemma 4.1 be satisfied. Then one has the relation

∞∑
k=1, k ̸=k0

λ2kg
2
k =

∞∑
k=1,k ̸=k0

g2k,1 ≤
1∫
0

(Tg(x))′2

r(x) dx .

Lemma 2. Let g1 = (Tg)′ and the following conditions hold: p ∈ C4[0, 1], q ∈ C2[0, 1],
g ∈ C7[0, 1], g ∈ W 8

2 (0, 1), g(0) = g′′(0) = g′(1) + p (1)g′′(1) = 0, J(g) = 0 and g1(0) =
g′′1(0) = g′1(1) + p (1)g′′1(1) = 0, J(g1) = 0. Then we have the following relation:

gk = λ− 2
k gk,2, k ∈ N, k ̸= k0,

where

gk,2 =

1∫
0

r(x)g1(x)vk(x)dx.
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Corollary 3. Let the conditions of Lemma 4.2 hold. Then one has the relation

∞∑
k=1, k ̸=k0

λ4kg
2
k =

∞∑
k=1,k ̸=k0

g2k,2 ≤
1∫
0

(Tg(x))′2

r(x) dx .

We will seek the solution to problem (1)-(6) in the form

u(x, t) =

∞∑
k=1, k ̸=k0

uk(t)yk(x), (46)

where

uk(t) =

1∫
0

r(x)u(x, t)vk(x)dx,

vk(x) = δ−1
k

(
yk(x)−

yk(1)

yk0(1)
yk0(x)

)
, k ∈ N, k ̸= k0.

We apply the method of separation of variables to determine the desired functions
uk(t), k ∈ N, k ̸= k0. Then from (1) we obtain

u′′k(t) + λkuk(t) = 0, k ∈ N, k ̸= k0, t ∈ [0, T ], (47)

uk(0) + δ1uk(T ) = φk, u
′
k(0) + δ2u

′
k(T ) = ψk, k ∈ N, k ̸= k0, (48)

where

φk =

1∫
0

r(x)φ(x)vk(x)dx, ψk =

1∫
0

r(x)ψ(x)vk(x)dx, k ∈ N, k ̸= k0.

Solving problem (47), (48) by using Remark 4.1 we get

uk(t) =
1

ϱk(T )
[φk(cos ρkt+ δ2 cos ρk(T − t))+

ψk

ρk
(sin ρkt− δ1 sin ρk(T − t))

]
,

where
ρk =

√
λk, ϱk(T ) = 1 + (δ1 + δ2) cos ρkT + δ1δ2.

The following theorem is the main result of this paper.
Theorem 3. Let the following conditions hold:

(i) 1 + δ1δ2 ≥ δ1 + δ2,

(ii) µi ≡ 0, i = 1, 2, 3, 4, p ∈ C4([0, 1]; (0,+∞)), q ∈ C2([0, 1]; [0,+∞)),

(iii) φ ∈ C7([0, 1];R), ϕ ∈W 8
2 (0, 1), φ(0) = φ′′(0) = φ′(1) + p (1)φ′′(1) = 0, J(φ) = 0
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and ϕ(0) = ϕ′′(0) = ϕ′(1) + p (1)ϕ′′(1) = 0, J(ϕ) = 0, where ϕ = 1
r (Tφ)

′,

(iv) ψ ∈ C3([0, 1];R), ψ ∈W 4
2 (0, 1), ψ

′′(0) = ψ′(1) + p (1)ψ′′(1) = 0.
Then the function

u(x, t) =
∞∑

k=1, k ̸=k0

1

ϱk(T )
[φk(cos ρkt+ δ2 cos ρk(T − t))+

ψk

ρk
(sin ρkt− δ1 sin ρk(T − t))

]
yk(x)

is a classical solution of problem (1)-(6).
The proof of this theorem is similar to the proof of the justification of the Fourier

method in [10, § 23.5] (see also [9]) with the use of Lemmas 1, 2 and Corollaries 2, 3.
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