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On the Basis Property in Lp of Eigenfunctions of a Dif-
ferential Operator with Integral Boundary Conditions

R.J. Taghiyeva

Abstract. This paper studies a second-order differential operator with integral boundary con-

ditions of the form
∫ 1

0
φν (x) y (x)dx = 0, ν= 1, 2. Conditions on the functions φν (x) , ν= 1, 2,

are found under which the system of eigenfunctions of the differential operator forms a basis in a
certain subspace of Lp (0, 1) , 1 < p < ∞, of codimension 2. The question of a possible extension
of this system to a basis of the entire space Lp (0, 1) is also considered.
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1. Introduction and Formulation of Problem

Consider the linear differential expression

l (y) = −y′′ + q (x) y, x ∈ (0, 1) , (1)

and the boundary conditions
U1 (y)=U2 (y)= 0, (2)

where q (x)− is a complex-valued integrable function on [0, 1] and U1(y) and U2(y) -
are the corresponding boundary forms. The differential expression (1) and the boundary
conditions (2) generate a differential operator L with a domain D(L) in some functional
space X. We are interested in the behavior of the eigenvalues and eigenfunctions of this
differential operator. This problem has been well studied in the case of regular boundary
conditions Uν (y)= 0, ν= 1, 2, (see [1,2] and the references therein). The case of irregu-
lar, as well as more general regular boundary conditions involving certain integrals of the
function y (x) and its derivatives, has been considered in [3-7]. These works studied the
spectral properties of the corresponding operator (spectrality, eigenvalues, and eigenfunc-
tions, the adjoint problem), primarily in the space L2 (0, 1) ). Additionally, works [8-13]
investigated similar problems in Lp (0, 1), and provided abstract approaches for their anal-
ysis. However, in most cases, the boundary forms generated an unbounded functional in
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the considered space. In this case, the operator had a dense domain, allowing the con-
struction of an adjoint operator or assuming the regularity of the boundary conditions [1,
2, 4, 8-12]. Here, we will consider integral boundary conditions of the form

Uν (y) =

∫ 1

0
φν (x) y (x)dx = 0, ν= 1, 2, (3)

where φν (x) - are given linearly independent functions belonging to the space Lq (0, 1) ,
1
p+

1
q = 1. These conditions are not regular in the sense of Birkhoff [1], and there is no corre-
sponding adjoint operator for them. Similar conditions have been used for other purposes
in [6, 7]. In [14], the problem (1),(3) was studied under stricter conditions on the functions
q (x) and φν (x), where the asymptotics of eigenvalues and eigenfunctions were obtained.
In [15], a Riesz basis theorem for the system of eigenfunctions in a certain subspace of
L2 (0, 1) was proven. In [16], the completeness and minimality of the eigenfunctions in a
certain subspace of Lp (0, 1) were proven. It is worth noting that differential equations
with nonlocal integral-type conditions have interesting applications in mechanics [17] and
in the theory of diffusion processes [18].

2. Preliminaries

We define the differential operator L in the space Lp (0, 1) , 1 < p < ∞, with the
domain

D(L) = {y(x) ∈W 2
p (0, 1); l(y) ∈ Lp(0, 1); U1(y) = 0, U2(y) = 0},

which acts as
Ly = l(y), ∀y ∈ D(y).

Consider the eigenvalue problem for the operator L:

Ly = λy. (4)

Let us set λ = ρ2 and denote by y1(x, ρ) the solution of equation (4) that satisfies the
initial conditions y(0) = 0, y′(0) = ρ, and by y2(x, ρ)– the solution of equation (4) that
satisfies the initial conditions y(0) = 1, y′(0) = 0. It is obvious that these solutions are
linearly independent (i.e., they form a fundamental system of solutions of equation (4)).
It is known [2] that these functions are also solutions of the following integral equations:

y1 (x, ρ) = sinρx +
1

ρ

∫ x

0
q (t) y1 (t, ρ) sinρ (x− t) dt, (5)

y2 (x, ρ) = cosρx +
1

ρ

∫ x

0
q (t) y2 (t, ρ) sinρ (x− t) dt. (6)

These solutions satisfy the estimates as | ρ |→ ∞ (see. [2]):

| y1 (x, ρ) |≤ Ce|Imρ|x, | y2 (x, ρ) |≤ Ce|Imρ|x , (7)

and are therefore bounded in the strip | Imρ |≤ h, for some h > 0. For further purposes,
we need to refine these estimates.
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Lemma 1. For the functions y1 (x, ρ) and y2 (x, ρ) in the strip | Imρ |≤ h, the following
asymptotic formulas hold as | ρ |→ ∞:

y1 (x, ρ) = sinρx− 1

2ρ

∫ x

0
q (t) dtcosρx +

1

2ρ

∫ x

0
q (t) cosρ (x− 2t) dt+O

(
1

ρ2

)
; (8)

y2 (x, ρ) = cosρx +
1

2ρ

∫ x

0
q (t) dt sinρx +

1

2ρ

∫ x

0
q (t) sinρ (x− 2t) dt+O

(
1

ρ2

)
. (9)

Proof. Substituting the expressions for the functions y1 (t, ρ) , y2 (t, ρ), given by for-
mulas (5) and (6), into the right-hand side of formulas (5) and (6) under the integral
signs:

y1 (x, ρ) = sinρx +
1

ρ

∫ x

0
q (t)

[
sinρt +

1

ρ

∫ t

0
q (τ) y1 (τ, ρ) sinρ (t− τ) dτ

]
sinρ (x− t) dt =

= sinρx +
1

ρ

∫ x

0
q (t) sinρt sinρ (x− t) dt+

+
1

ρ2

∫ x

0
q(t)

(∫ t

0
q (τ) y1 (τ, ρ) sinρ (t− τ) dτ

)
sinρ (x− t) dt =

= sinρx − 1

2ρ

∫ x

0
q (t) dtcosρx +

1

2ρ

∫ x

0
q (t) cosρ (x− 2t) dt+

1

ρ2
r1 (x, ρ) ;

y2 (x, ρ) = cosρx +
1

ρ

∫ x

0
q (t)

[
cosρt +

1

ρ

∫ t

0
q (τ) y2 (τ, ρ) dτ

]
sinρ (x− t) dt =

= cosρx +
1

ρ

∫ x

0
q (t) cosρt sinρ (x− t) dt+

+
1

ρ2

∫ x

0
q(t)

(∫ t

0
q (τ) y2 (τ, ρ) sinρ (t− τ) dτ

)
sinρ (x− t) dt =

= cosρx +
1

2ρ

∫ x

0
q (t) dt sinρx +

1

2ρ

∫ x

0
q (t) sinρ (x− 2t) dt+

1

ρ2
r2 (x, ρ) ,

where denoted by

ri (x, ρ) =

∫ x

0
q(t)

(∫ t

0
q (τ) yi (τ, ρ) sinρ (t− τ) dτ

)
sinρ (x− t) dt, i = 1, 2.

Considering the known inequalities

| sinρx |≤ e|Imρ|x, | cosρx |≤ e|Imρ|x, x ∈ [0, 1] ,

As well as inequalities (7), we obtain

| ri (x, ρ) |≤
∫ x

0
|q(t)|

(∫ t

0
|q (τ)| |yi (τ, ρ)| |sinρ (t− τ) | dτ

)
|sinρ (x− t) | dt ≤
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≤ C

∫ x

0
|q(t)|

(∫ t

0
|q (τ)| e|Imρ|τe|Imρ|(t−τ)dτ

)
e|Imρ|(x−t)dt ≤

≤ Ce|Imρ|x
∫ x

0
|q(t)|

(∫ t

0
|q (τ)| dτ

)
dt ≤ Ce|Imρ|

(∫ 1

0
|q (t)| dt

)2

.

Thus, for |Imρ| ≤ h, | ρ |→ ∞, the following estimates hold uniformly for x ∈ [0, 1]:

| r1 (x, ρ) |= O (1) , | r2 (x, ρ) |= O (1) ,

From this, the validity of formulas (8) and (9). Lemma is proved.

Let us present briefly the main definitions and facts which will be used in what follows.
Let X be a B-space. A system{xn}n∈N of elements X is said to be complete in X if

L
(
{xn}n∈N

)
= X; that is, any element of the space X can be approximated by a linear

combination of elements of this system with any accuracy in the norm of the space X.

A system {xn}n∈N of elements X is said to be minimal in X if xn /∈ L
(
{xk}k ̸=n

)
. It

is well known that a system {xn}n∈N is minimal if and only if there exists a biorthogonal
system which is dual to it, that is, a system of linear functionals {x∗n}n∈N from X∗ such
that ⟨xn, x∗k⟩ = δnk for all n, k ∈ N . Moreover, if the initial system is complete and
minimal in X, then the biorthogonal system is uniquely defined.

A system {xn}n∈N forms a basis of the space X if, for any element x ∈ X, there exists
a unique expansion into a series

x =

∞∑
n=1

cnxn

converging in the norm of the space X.
Two systems {xn}n∈N and {yn}n∈N of a B-space X are called equivalent if there exists

an automorphism that maps one of these systems to the other. A system equivalent to a
basis is itself a basis in the same space.

Any basis is a complete and minimal system in X, and, therefore, we can uniquely find
its biorthogonal dual system {x∗n}n∈N and hence the expansion of any element x ∈ X with
respect to the basis {x}n∈N coincides with its biorthogonal expansion, that is, cn = ⟨x, x∗n⟩
for all n ∈ N .

We will use also some facts about p - closure bases. Concerning these facts more details
one can see the works [19, 20].

Systems {xn}n∈N , {yn}n∈N ⊂ X in B -space X are called p-closure if

∞∑
n=1

∥xn − yn∥pX <∞.

The minimal system {xn}n∈N ⊂ X with biorthogonal system {x∗n}n∈N ⊂ X∗ is called
p- besselian, if for any x ∈ X ( ∞∑

n=1

|⟨x, x∗n⟩|
p

) 1
p

≤M∥x∥X .
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If the basis {xn}n∈N for X is p- besselian, then we call it as p-basis.
It is valid the following

Theorem 1. [20] Let the system {xn}n∈N is p -basis for B- space X and the system
{yn}n∈N ⊂ X is p′– clouser to it, 1 < p <∞. Then the following assertions are equivalent:

1. {yn}n∈N is complete in X;

2. {yn}n∈N is minimal in X;

3. {yn}n∈N is isomorphic to {xn}n∈N basis for X.

3. Asymptotics of Eigenvalues and Eigenfunctions

The main result of this section is:

Theorem 2. Let the function q (x) be integrable, and k, let the functions φν (x) , ν = 1, 2,
belong to the class W 2

1 (0, 1) . Suppose that

α1β2 − α2β1 ̸= 0, (10)

where we denote αν = φν (0) , βν = φν (1) . Then the eigenvalues of the operator L are
asymptotically simple, and the following asymptotic formula holds:

λk = ρ2k, ρk = πk +O

(
1

k

)
, k → ∞.

Proof. To find the eigenvalues of the operator L consider the determinant

∆ (ρ) =

∣∣∣∣ U1 (y1) U1 (y2)
U2 (y1) U2 (y2)

∣∣∣∣ ,
where y1 = y1 (x, ρ) , y2 = y2 (x, ρ) – form a fundamental system of solutions of equation
(4). Using formulas (8) and (9), we obtain

Uν (y1) =

∫ 1

0
y1 (x, ρ)φν (x) dx =

∫ 1

0
φν (x) sinρx dx−

1

2ρ

∫ 1

0
φν (x) cosρx

∫ x

0
q (t) dtdx+

+
1

2ρ

∫ 1

0
φν (x)

∫ x

0
q (t) cosρ (x− 2t) dtdx+O(

1

ρ2
) =

=
1

ρ

(
−φν (x) cosρx + φ′

ν (x) sinρx
)∣∣1

0
− 1

ρ2

∫ 1

0
φ′′
ν (x) sinρx dx−

+
1

2ρ

∫ 1

0
q(t)

(∫ 1

t
φν (x) cosρ (x− 2t) dx

)
dt+O

(
1

ρ2

)
=

=
1

ρ
(−βνcosρ + αν) +

1

ρ2
φ′
ν (1) sinρ − 1

ρ2

∫ 1

0
φ”ν (x) sinρ xdx−
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− 1

2ρ2
φν (1) sinρ

∫ 1

0
q (t) dt+

1

2ρ2

∫ 1

0
φ′

ν (x)

∫ x

0
q (t) dt sinρx dx+

+
1

2ρ2

∫ 1

0
φν (x) q (x) sinρx dx+

1

2ρ2

∫ 1

0
q(t)(φv (x) sinρ (x− 2t) |x=1

x=t )dt−

− 1

2ρ2

∫ 1

0
q (t)

∫ 1

t
φ′

ν (x) sinρ (x− 2t) dxdt+O

(
1

ρ2

)
=

=
1

ρ
(−βνcosρ + αν) +O

(
1

ρ2

)
; (11)

Uν (y2) =

∫ 1

0
y2 (x, ρ)φν (x) dx =

∫ 1

0
φν (x) cosρx dx+

1

2ρ

∫ 1

0
φν (x) sinρx

∫ x

0
q (t) dtdx+

+
1

2ρ

∫ 1

0
φν (x)

∫ x

0
q (t) sinρ (x− 2t) dtdx+O(

1

ρ2
) =

=
1

ρ
βνsinρ − 1

ρ2
φ′
ν (1) cosρ − 1

ρ2

∫ 1

0
φ′′
ν (x) cosρx dx−

− 1

2ρ2

(
φν (x)

∫ x

0
q (t) dtcosρx

)∣∣∣∣x=1

x=0

+
1

2ρ2

∫ 1

0
q (t)

∫ 1

t
φv (x) sinρ (x− 2t) dtdx =

=
1

ρ
βνsinρ − 1

ρ2
φ′
ν (1) cosρ − 1

ρ2

∫ 1

0
φ′′
ν (x) cosρ xdx− φν (1) cosρ

∫ 1

0
q (t) dt−

− 1

2ρ2

∫ 1

0
q (t)

(
φν(x) cosρ (x− 2t) |x=1

x=t −
∫ 1

t
φ′
ν (x) cosρ (x− 2t) dx

)
dt+O

(
1

ρ2

)
=

=
1

ρ
βνsinρ +O

(
1

ρ2

)
. (12)

Thus, the following relations are obtained:

Uν (y1) =
1

ρ
(−βνcosρ + αν) +O

(
1

ρ2

)
,

Uν (y2) =
1

ρ
βνsinρ +O

(
1

ρ2

)
.

Taking these relations into account, we obtain

∆ (ρ) =

∣∣∣∣∣∣
1
ρ (−β1cosρ + α1) +O

(
1
ρ2

)
1
ρβ1sinρ +O

(
1
ρ2

)
1
ρ (−β2cosρ + α2) +O

(
1
ρ2

)
1
ρβ2sinρ +O

(
1
ρ2

) ∣∣∣∣∣∣ =

=
1

ρ2

∣∣∣∣∣∣ −β1cosρ + α1 +O
(
1
ρ

)
β1sinρ +O

(
1
ρ

)
−β2cosρ + α2 +O

(
1
ρ

)
β2sinρ +O

(
1
ρ

) ∣∣∣∣∣∣ =
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=
1

ρ2
(α1β2 − α2β1) sinρ +O

(
1

ρ3

)
=

1

ρ2

(
(α1β2 − α2β1) sinρ +O

(
1

ρ

))
.

According to condition (10) α1β2 − α2β1 ̸= 0, applying Rouché’s theorem and using the
standard method (see [1, p. 77]), we obtain the asymptotics of the zeros of ∆ (ρ) :

ρk = πk +O

(
1

k

)
, k → ∞.

The theorem is proved.

Remark 1. The numbering of the zeros will be refined later. For now, we can only assert
that they are asymptotically simple. This means that the number of associated functions
of the operator L (if any exist) is finite.

Now, let us proceed to finding the eigenfunctions of the operator L. The following
theorem holds:

Theorem 3. Under the conditions of Theorem 2, the eigenfunctions of the operator L
satisfy the following asymptotic formula:

yk (x) = cosπkx +O

(
1

k

)
, k → ∞. (13)

Proof. Following [1, p. 84], we seek the eigenfunctions of the operator L in the form

yk (x) = ck

∣∣∣∣ y1 (x, ρk) y2 (x, ρk)
U2 (y1) U2 (y2)

∣∣∣∣ , (14)

if α2 ̸= ±β2, or

yk (x) = ck

∣∣∣∣ U1 (y1) U1 (y2)
y1 (x, ρk) y2 (x, ρk)

∣∣∣∣ , (15)

if α1 ̸= ±β1, where ck are some normalization factors to be determined. Assume α2 ̸= ±β2.
We have ρk = πk +O

(
1
k

)
and

y1 (x, ρk) = sinρkx +O

(
1

ρk

)
= sinπkx+O

(
1

k

)
,

y2 (x, ρk) = cosρkx +O

(
1

ρk

)
= cosπkx+O

(
1

k

)
.

Substituting these expressions into determinant (14) and using formulas (11) and (12) for
ρ = ρk, we obtain

yk (x) = ck

∣∣∣∣∣ sinπkx+O
(
1
k

)
cosπkx+O

(
1
k

)
1
ρk

(−β2cosρk + α2) +O
(

1
ρ2k

)
1
ρβ2sinρk +O

(
1
ρ2k

) ∣∣∣∣∣ =
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ck

∣∣∣∣∣ sinπkx+O
(
1
k

)
cosπkx+O

(
1
k

)
1
πk

(
−β2(−1)k + α2

)
+O

(
1
k2

)
1
ρβ2sinρk +O

(
1
k2

) ∣∣∣∣∣ =
= ck

(
1

πk

(
α2 − (−1)kβ2

)
cosπkx +O

(
1

k2

))
.

By choosing ck = πk

(α2−(−1)kβ2)
, from the last equation, we obtain the validity of (13).

If α2 = ±β2, then from condition (10), it follows that α1 ̸= ±β1. Proceeding similarly to
the previous case and using formulas (11), (12), and the asymptotics of ρk, from formula
(15) we obtain the validity of (13), where we should choose ck = πk

α1−(−1)kβ1
.

The theorem is proved.

4. Basis Property of Eigenfunctions

The operator L constructed in Section 2 does not have a dense domain in Lp (0, 1) ,
and therefore the system of eigenfunctions and associated functions of this operator cannot
be complete, let alone form a basis in this space. To address this issue, we consider the
operator L not in the entire space Lp (0, 1) , but in its closed subspace:

Xp = {f (x) ∈ Lp (0, 1) : Uν (f) = 0, ν = 1, 2} .

Since the functionals Uν , ν = 1, 2, are bounded in Lp (0, 1) , it is clear that codim Xp = 2.
We define the operator L in the spaceXp as follows: D (L) =

{
y ∈W 2

p (0, 1) ∩Xp : l (y) ∈ Xp

}
and for y ∈ D (L) : Ly = l (y) .

It is evident that the operator defined in this way acts in the space Xp and has a dense
domain in this space.

The following theorem was proved in [16].

Theorem 4. [16] The eigenfunctions and associated functions of the operator L form a
complete and minimal system in the space Xp, 1 ≤ p <∞.

The main result of this work is the following theorem.

Theorem 5. There exist functions ψk ∈ Lq (0, 1) , k = 1, 2, such that the system {ψ1, ψ2}∪
{yn}n≥2 forms a basis in the space Lp (0, 1) , 1 < p < ∞, equivalent to the system
{cosπnx }∞n=0. The system {yn}n≥2 of eigenfunctions and associated functions of the op-
erator L forms a basis in the space Xp, 1 < p <∞.

Proof. Since codim Xp = 2, the space Lp (0, 1) can be represented as a direct sum:
Lp (0, 1) = Xp ⊕X0 , where dim X0 = 2. According to the Hahn-Banach theorem, there
exist functions ψk ∈ Lq (0, 1) , k = 1, 2, such that ⟨φi, ψk⟩ = δik, i, k = 1, 2, and ⟨y, ψk⟩ =
0, ∀y ∈ Xp, where φ1, φ2−are functions from the boundary conditions.

From Theorem 4, it follows that the system {ψ1, ψ2} ∪ {yn} is complete and minimal
in Lp (0, 1) . Indeed, let {zn} be the system of eigenfunctions and associated functions of
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the adjoint operator L∗, forming a biorthogonal system with {yn}. Then the system
{φ1, φ2} ∪ {zn} is biorthogonal to {ψ1, ψ2} ∪ {yn}, which is equivalent to the minimality
of {ψ1, ψ2} ∪ {yn} in Lp (0, 1) . Now, we prove the completeness of this system. Suppose
z ∈ Lq (0, 1) ,

1
p + 1

q = 1, and ⟨ψ1, z⟩ = ⟨ψ2, z⟩ = ⟨yn, z⟩ = 0. For any ∀f ∈ Lp (0, 1) we
represent it as f = y + c1ψ1 + c2ψ2, where y ∈ Xp. Then ⟨f, z⟩ = ⟨y, z⟩ + c1 ⟨ψ1, z⟩ +
c2 ⟨ψ2, z⟩ = ⟨y, z⟩ . On the other hand, since the system {yn} is complete in Xp, and
⟨yn, z⟩ = 0, ∀n, it follows that ⟨y, z⟩ = 0, ∀y ∈ Xp. Thus, we obtain that ⟨f, z⟩ = 0,
∀f ∈ Lp (0, 1) , which implies z = 0, meaning that the system {ψ1, ψ2} ∪ {yn} is complete
in Lp (0, 1) . Now we show that this system forms a basis in Lp (0, 1). From Theorem 3, it
follows that the systems {yn} and {cosπnx } are s−close for any s ∈ (1,∞):

∞∑
n=0

∥yn (x)− cosπnx ∥sLp
< +∞, (16)

where y0 (x) = ψ1 (x) , y1 (x) = ψ2 (x) . Let p ∈ (1, 2], then by the Hausdorff-Young in-
equality (see [21]), for all ∀f ∈ Lp (0, 1) :( ∞∑

n=0

|⟨f, en⟩|q
) 1

q

≤ C∥f∥Lp
, (17)

where en (x) = 2cosπnx . This inequality implies that the system {cosπnx }∞n=0 forms a
q−basis in Lp (0, 1) . For p ∈ (2,∞), we have q ∈ (1, 2) and the continuous embedding
Lp (0, 1) ⊂ Lq (0, 1) holds. Again, using the Hausdorff-Young inequality: ∀f ∈ Lp (0, 1) :( ∞∑

n=0

|⟨f, en⟩|p
) 1

p

≤ C∥f∥Lq
≤ C∥f∥Lq

, (18)

that is, the system {cosπnx }∞n=0 forms p−basis in Lp (0, 1) . Thus, denoting r = max {p, q}
and choosing in inequality (16) s = r(r − 1)−1, and taking into account inequalities (17)
and (18), we obtain that for any p ∈ (1,∞), all the conditions of Theorem 2.1 are satisfied,
according to which the system {yn (x)}∞n=0 forms a basis in Lp (0, 1) , equivalent to the sys-
tem {cosπnx }∞n=0. Moreover, this result, as well as the asymptotics of the eigenfunctions,
dictates that the numbering of the eigenfunctions and associated functions of the operator
L should be performed as {yn (x)}∞n=2. Now, it is easy to establish the basis property of
the system in the space Xp. Let y (x) be an arbitrary function from Xp. Since in this case
⟨y, φ1⟩ = ⟨y, φ2⟩ = 0, its expansion in the basis {yn (x)}∞n=0 in Lp (0, 1) takes the form:

y =
∞∑
n=2

⟨y, zn⟩yn.

Furthermore, from the completeness and minimality of the system {yn (x)}∞n=2 in Xp we
conclude that such an expansion is unique, i.e., the system {yn (x)}∞n=2 forms a basis in
Xp.

Corollary 1. The system {yn (x)}∞n=2 is an r− basis in the space Xp, 1 < p <∞, where
r = max {p, q} .
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