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Construction of a Basis in Lp From Root Functions of a
Differential Operator With Non-strongly Regular Bound-
ary Conditions

R.J. Taghiyeva∗, I.G. Feyzullayev

Abstract. We study a spectral problem for an ordinary differential equation of the second order
with non-strengthened regular boundary conditions on a finite interval [0,1]. Such problems arise
when solving a non-local boundary value problem for partial differential equations by the Fourier
method. They arise, for example, when solving non-stationary diffusion problems with boundary
conditions of the Samarskii-Ionkin type, or when solving a stationary diffusion problem with op-
posite flows on a part of an interval. The boundary conditions of this problem are regular, but
not strengthened regular in the sense of Birkhoff. The system of eigenfunctions of such a problem
is complete and minimal, but does not form a basis in the space Lp [0, 1]. In this case, direct
application of the Fourier method is impossible. Based on these eigenfunctions, a new system of
functions is constructed, which already forms a basis in Lp [0, 1].
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1. Introduction

The solution of some elliptic equations with nonlocal boundary conditions using the
Fourier method leads to spectral problems with boundary conditions that are regular but
not strongly regular. For this reason, the root functions of these problems do not generally
form a basis in the corresponding function space. In such a case, direct application of the
Fourier method is impossible. Based on these eigenfunctions, a new system of functions is
constructed consisting of linear combinations of root functions, which already forms a basis
in Lp [0, 1]. However, the resulting system is not a system of eigenfunctions of the spectral
problem. Nevertheless, this system is used to solve the equation under consideration by
the Fourier method. One of such problems is the following initial-boundary value problem
for the parabolic equation

∂U

∂t
=
∂2U

∂x2
, 0 < x < 1, t > 0,
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with initial condition

U (x, 0) = φ (x) , 0 ≤ x ≤ 1,

and boundary conditions

U (0, t) = 0,
∂U

∂x
(0, t) =

∂U

∂x
(1, t) + αU (1, t) , t ≥ 0.

This problem leads to the following spectral problem

−u′′ (x) = λ u (x) , 0 < x < 1,
u (0) = 0, u′ (0)− u′ (1) + α u (1) = 0.

}
(1)

The boundary conditions of this spectral problem are regular, but not strongly regular.
A number of works by the authors [1-5] are devoted to the study of such problems in
the Lebesgue space L2[0, 1]. It should be noted that issues related to this topic in the
case of α = 0 were also considered in works [6-11]. All these spectral problems are not
self-adjoint. The case of α = 0 differs from the case of α ̸= 0 in that in the first case
all eigenvalues are double and they correspond to one eigenfunction and one associated
function, and together they form a basis in L2 [0, 1]. In the second case, all eigenvalues
are simple, but the corresponding eigenfunctions are not a basis in L2 [0, 1]. One of the
methods for constructing a basis, based on the system of eigenfunctions of problem (1) in
the case of α > 0 was proposed in [1]. Using the eigenfunctions of this problem, a special
system of functions is constructed, which will form a basis in L2 [0, 1]. And this fact is
applied to solve a nonlocal initial-boundary value problem for the heat equation. It is used
in [3] to solve an inverse nonlocal boundary value problem for the heat equation, and in [4]
to solve a nonlocal boundary value problem for the Helmholtz operator in a semicircle. A
similar method was used in [5] to study the classical solvability of one nonlocal boundary
value problem for the Laplace equation in a semicircle.

The aim of this work is to construct a basis in Lp [0, 1] from the system of eigenfunctions
of problem (1) for any complex value of the parameter α.

2. Preliminaries

Let us present briefly the main definitions and facts which will be used in what follows.
Let X be a Banach space. A system{xn}n∈N of elements X is said to be complete in X

if L
(
{xn}n∈N

)
= X; that is, any element of the space X can be approximated by a linear

combination of elements of this system with any accuracy in the norm of the space X.

A system {xn}n∈N of elements X is said to be minimal in X if xn /∈ L
(
{xk}k ̸=n

)
. It

is well known that a system {xn}n∈N is minimal if and only if there exists a biorthogonal
system which is dual to it, that is, a system of linear functionals {x∗n}n∈N from X∗ such
that ⟨xn, x∗k⟩ = δnk for all n, k ∈ N . Moreover, if the initial system is complete and
minimal in X, then the biorthogonal system is uniquely defined.
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We say that a system {xn}n∈N is uniformly minimal in X, if there exists γ > 0 such
that for all n ∈ N ,

dist (xn, Xn) ≥ γ∥xn∥X ,

where Xn = L
[
{xk}k ̸=n

]
. It is also well known that a complete and minimal system

{xn}n∈N is uniformly minimal in X if and only if:

sup
n∈N

∥xn∥X∥x∗n∥X∗ <∞ .

A system {xn}n∈N forms a basis of the space X if, for any element x ∈ X, there exists
a unique expansion into a series

x =
∞∑
n=1

cnxn

converging in the norm of the space X.
Two systems {xn}n∈N and {yn}n∈N of a Banach space X are called equivalent if

there exists an automorphism T : X → X that maps one of these systems to the other:
Txn = yn, ∀n ∈ N. A system equivalent to a basis is itself a basis in the same space.

A system in a Hilbert space that is equivalent to an orthonormal basis is called a
Riesz basis. A Riesz basis is also an unconditional basis, i.e. it remains a basis under any
permutation of its elements.

A system {xn}n∈N is called a basis with brackets in a Banach space X if there exists
a sequence {nk}k∈N of positive integers such that n1 < n2 < . . .< nk < nk+1 < . . . , and
for any x ∈ X there is a unique expansion into a series

x =
∞∑
k=0

nk+1∑
i=nk+1

cixi, (n0 = 0)

converging in the norm of the space X. In the case of a Hilbert space, an unconditional
basis with brackets is also called a Riesz basis with brackets.

We say that a system {xn}n∈N is almost normalized in X, if

0 < inf
n∈N

∥xn∥ ≤ sup
n∈N

∥xn∥ <∞ .

A uniformly minimal system is almost normalized if and only if its bioorthogonal
system is almost normalized.

Statement 1. Let {xn}n∈N be a minimal system in a Banach space X, {x∗n}n∈N be its
biorthogonal system. If the system {xn}n∈N has two asymptotically close subsystems, i.e.

there exist subsystems {xnk
}k∈N and

{
xn′

k

}
k∈N

such that

lim
k→∞

∥∥∥xnk
− xn′

k

∥∥∥
X

= 0, (2)

then the system {x∗n}n∈N is not almost normalized.
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Proof. By
{
x∗nk

}
k∈N and

{
x∗n′

k

}
k∈N

we denote the corresponding subsystems of

the biorthogonal system {x∗n}n∈N . Then from the biorthonormality conditions we have

〈
〈
xnk

, x∗nk

〉
= 1,

〈
xn′

k
, x∗nk

〉
= 0.. From here we get 〈

〈
xnk

− xn′
k
, x∗nk

〉
= 1. Then

1 =
∣∣∣〈xnk

− xn′
k
, x∗nk

〉∣∣∣ ≤ ∥∥∥xnk
− xn′

k

∥∥∥
X

∥∥x∗nk

∥∥
X∗

or ∥∥x∗nk

∥∥
X∗ ≥

(∥∥∥xnk
− xn′

k

∥∥∥
X

)−1
.

Then from condition (2) it follows that

lim
k→∞

∥∥x∗nk

∥∥
X∗ = ∞. (3)

Similarly, it is established that limk→∞

∥∥∥x∗n′
k

∥∥∥
X∗

= ∞. Consequently, the system {x∗n}n∈N
is not almost normalized.

Statement 2. If the system {xn}n∈N ⊂ X is almost normalized and has two asymptoti-
cally close subsystems, then it is not uniformly minimal and, moreover, cannot be a basis
in X.

Proof. Let {xnk
}k∈N and

{
xn′

k

}
k∈N

be asymptotically close subsystems of {xn}n∈N ,

and
{
x∗nk

}
k∈N and

{
x∗n′

k

}
k∈N

be the corresponding subsystems of the biorthogonal system

{x∗n}n∈N . Then, from the condition of almost normalization of the system {xn}n∈N , we
have: ∃m > 0 : ∥xnk

∥X > m, ∀k ∈ N. Taking into account (3), we obtain

lim
k→∞

∥xnk
∥X
∥∥x∗nk

∥∥
X∗ = ∞.

The latter means that the system {xn}n∈N is not uniformly minimal.
Any basis is a complete and minimal system in X, and, therefore, we can uniquely find

its biorthogonal dual system {x∗n}n∈N and hence the expansion of any element x ∈ X with
respect to the basis {x}n∈N coincides with its biorthogonal expansion, that is, cn = ⟨x, x∗n⟩
for all n ∈ N .

We will use also some facts about p-closure bases. Concerning these facts more details
one can see the works [12, 13].

Systems {xn}n∈N , {yn}n∈N ⊂ X in Banach space X are called p-closure if

∞∑
n=1

∥xn − yn∥pX <∞.

The minimal system {xn}n∈N ⊂ X with biorthogonal system {x∗n}n∈N ⊂ X∗ is called
p- besselian, if for any x ∈ X ( ∞∑

n=1

|⟨x, x∗n⟩|
p

) 1
p

≤M∥x∥X .
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If the basis {xn}n∈N for X is p- besselian, then we call it as p-basis.

It is valid the following

Theorem 1. [12, 13] Let the system {xn}n∈N is p -basis for Banach space X and the
system {yn}n∈N ⊂ X is p′– clouser to it, 1 < p < ∞. Then the following assertions are
equivalent:

1. {yn}n∈N is complete in X;

2. {yn}n∈N is minimal in X;

3. {yn}n∈N is isomorphic to {xn}n∈N basis for X.

It is valid the following

Statement 3. [14, 15] Let system {xn}n∈N forms a basis with parentheses for Banach
space X. If the system {xn}n∈N is uniformly minimal and condition

sup
k∈N

(nk+1 − nk) <∞ (4)

hold, then the system {xn}n∈N forms a basis for X.

Statement 4. [15] Let system {xn}n∈N forms a Riesz basis with parentheses for Hilbert
space X. If the system {xn}n∈N is almost normalized, uniformly minimal and condition
(4) hold, then it forms a basis Riesz for X.

3. Study of the Spectral Problem

In this section we will study the properties of the eigenvalues and eigenfunctions of the
following spectral problem

−u′′ (x) = λu (x) , 0 < x < 1, u (0) = 0, u′ (0) = u′ (1) + α u (1) , (5)

where the parameter α can take any complex value. In the case α ̸= 0, the eigenvalues of
the spectral problem can be divided into two series, which have the form

λ2k−1 = (ρ2k−1)
2, k ∈ N, λ2k = (ρ2k)

2, k ∈ Z+, (6)

where Z+ = {0} ∪N, ρ2k−1 = 2πk, and ρ2k are the roots of the equation

tg
ρ

2
=
α

ρ
. (7)

Using the standard method we obtain that (see [16]) the following is true

Lemma 1. Equation (7) for any complex α has a countable number of solutions that are
asymptotically simple and have the asymptotics

ρ2k = 2πk +
α

2πk
+O

(
1

k3

)
. (8)
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Each eigenvalue of problem (5) corresponds to a unique eigenfunction up to a non-zero
factor. Using the numbering introduced by equalities (6), the set of eigenfunctions can be
represented as

u2k−1 (x) = sin2πkx, k ∈ N ; u2k (x) = sinρk2x, k ∈ Z+; (9)

The problem conjugate to (5) is defined by the equality

−ϑ′′ (x) = λϑ(x), 0 < x < 1, ϑ(0) = ϑ(1), ϑ′(1) + α ϑ(1) = 0. (10)

It has the same eigenvalues (6) as problem (5). The corresponding eigenfunctions have
the form

ϑ2k−1 (x) = C2k−1

(
cos2πkx − α

2πk
sin2πkx

)
, k ∈ N ; (11)

ϑ2k (x) = C2k

(
cosρ2kx +

α

ρ2k
sinρ2kx

)
, k ∈ Z+,

where

C2k−1 = −4πk

α
, C2k =

4πk

α
+O

(
1

k

)
.

The systems of eigenfunctions of problems (5) and (10) are numbered in such a way that
⟨un, ϑm⟩ = δnm. The constants Cn are chosen so that ⟨un, ϑn⟩ = 1, n ∈ Z+.

Let’s show that the system {un (x)}n∈Z+ is not uniformly minimal in Lp (0, 1).

Theorem 2. The system of eigenfunctions {un (x)}n∈Z+ of problem (5) is complete,
minimal and almost normalized, but is not uniformly minimal in Lp (0, 1) , 1 < p <∞.

Proof. The spectral problem (5) is regular, but not strongly regular in the sense of
Birkhoff (see [16]). From the results of [17], in particular, it follows that the eigenfunctions
and associated functions of problem (5) form a basis with brackets in Lp (0, 1) , 1 < p <∞.
From this, in particular, follows the completeness of the system {un (x)}n∈Z+ in the space
Lp (0, 1) , 1 < p <∞. The system {ϑn (x)}n∈N is a biorthogonal to {un (x)}n∈Z+ system
regarding the space Lp (0, 1) , 1 < p < ∞, and therefore the system {un (x)}n∈Z+ is
minimal in Lp (0, 1).

Let us show the almost normalized nature of the system {un (x)}n∈Z+ . Let 1 < p <∞.
We denote 2δk = ρ2k − 2πk. Then from (8) we have 2δk = α

2πk + O
(

1
k3

)
or δk = O

(
1
k

)
.

From here for the eigenfunctions u2k (x) we obtain

sinρ2kx = sin (2πk + 2 deltak)x = sin2πkx +O

(
1

k

)
. (12)

Let’s estimate the norms of eigenfunctions:

∥u2k−1∥Lp
=

(∫ 1

0
|sin2πkx |pdx

) 1
p

≤ 1;
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∥u2k∥Lp
=

(∫ 1

0
|sin (2πk + 2δk)x |pdx

) 1
p

≤ 1 +O

(
1

k

)
.

From this we get
lim
k→∞

∥u2k∥Lp
≤ 1 . (13)

For the lower bound, we first consider the case 1 < p ≤ 2. Then for u2k−1 (x) we have

∥u2k−1∥pLp
=

∫ 1

0
|sin2πkx |pdx ≥

∫ 1

0
sin22πkx dx =

1

2
.

It follows from this

∥u2k−1∥Lp
≥
(
1

2

) 1
p

.

Similarly, for large values of k for the functions u2k−1 (x) we obtain

∥u2k∥Lp
=

(∫ 1

0
|sin (2πk + 2δk) x|pdx

) 1
p

≥

≥
(∫ 1

0
|sin2πkx |pdx

) 1
p

−O

(
1

k

)

≥
(
1

2

) 1
p

−O

(
1

k

)
→
(
1

2

) 1
p

, k → ∞.

Hence,

lim
k→∞

∥u2k∥Lp
≥
(
1

2

) 1
p

.

From here, taking into account (13), we obtain the almost normalized nature of the system
{un (x)}n∈Z+ for 1 < p ≤ 2.

Now let p > 2. Then we have a continuous embedding Lp (0, 1) ⊂ L2 (0, 1) and

∥u2k−1∥Lp
≥ ∥u2k−1∥L2

=

(
1

2

) 1
2

;

and also for large values of k

∥u2k∥Lp
≥ ∥u2k∥L2

≥ ∥u2k−1∥L2
−O

(
1

k

)
≥
(
1

2

) 1
2

−O

(
1

k

)
.

From this we have

lim
n→∞

∥u2k∥Lp
≥
(
1

2

) 1
p

.

Thus, for all p ∈ (1,∞)
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0 < inf
n∈N

∥un∥Lp
≤ sup

n∈N
∥un∥Lp

<∞,

i.e. the system { {un (x)}n∈Z+ is almost normalized in Lp (0, 1).
Let us now proceed to the proof of the last statement of the lemma. From the asymp-

totics (12) we have

u2k (x)− u2k−1 (x) = O

(
1

k

)
.

Hence∥u2k − u2k−1∥Lp
= O

(
1
k

)
, i.e. the subsystems {u2k−1 (x)}k∈N and {u2k (x)}k∈N are

asymptotically close. Then it follows from Statement 1 that

lim
k→∞

∥ϑ2k−1∥Lp′
= lim

k→∞
∥ϑ2k∥Lp′

= ∞. (14)

On the other hand, the system {un (x)}n∈Z+ is almost normalized in Lp (0, 1), so from
Statement 1.2 we obtain that the system {un (x)}n∈Z+ is not uniformly minimal. Note
that the validity of relations (14) can also be obtained directly from the explicit formulas
(11) for the functions ϑn (x) . The lemma is proven.

From this lemma follows

Corollary 1. The system {un (x)}n∈Z+ does not form a basis for Lp (0, 1) , 1 < p <∞.

4. Main results

Let us consider the case α = 0 separately. In this case, the spectral problem will take
the form

−w′′ (x) = λw (x) , 0 < x < 1, w (0) = w′ (0)− w′ (1) = 0. (15)

In obtaining the main results we essentially will use the basicity in Lp (0, π) the system
{wn (x)}n∈Z+ where

w0 (x) = x, w2k−1 (x) = sin2πkx, w2k (x) = xcos2πkx , k ∈ N,

which is a collection of root functions of the spectral problem (15).
It is valid

Theorem 3. The system {wn (x)}n∈N forms a q−basis for Lp (0, 1) , 1 < p < + ∞,
where q = max {p, p′} . In the case p = 2 this system is a Riesz basis for L2 (0, 1).

Proof. As in the case of spectral problem (5), spectral problem (15) is also not strongly
regular, and from the results of [17] it follows that the system {wn (x)}n∈Z+of eigen and
associated functions of this problem forms a basis with brackets in Lp (0, 1) , 1 < p <∞,
and in brackets you need to combine pairs of terms corresponding to w2k−1 and w2k, that
is nk+1 − nk = 2.

The problem conjugate to (15) has the form

−z′′ (x) = λ z (x) , 0 < x < 1, z′ (1) = z (0)− z (1) = 0. (16)
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The system of eigen and associated functions of the spectral problem (16) is the system{zn (x)}n∈Z+ ,
where

z0 (x) = 2, z2k−1 (x) = 4 (1− x) sin2πkx, z2k (x) = 4cos2πkx, k ∈ N.

The systems {wn (x)}n∈Z+ and {zn (x)}n∈Z+ are biorthonormal, i.e.

⟨wn, zm⟩ = δnm, ∀n,m ∈ Z+.

From the formulas for wn (x) and zn (x) it is obvious that

sup
n∈Z+

∥wn∥Lp(0,1)
∥zn∥Lp′ (0,1)

< +∞.

Thus, all the conditions of Statement 3 are satisfied, according to which the system
{wn (x)}n∈Z+ forms a basis in the space Lp (0, 1) , 1 < p <∞. Let us show that the system
{wn (x)}n∈Z+ is also a q−basis in this space, where q = max {p, p′} . Let p ∈ (1, 2], then
q = p′ and, as follows from the Hausdorff-Young inequality (see [18]), for any function
f (x) from Lp (0, 1) we have ( ∞∑

k=0

|⟨f, z2k⟩|p
′

) 1
p′

≤ C ∥f∥Lp
;

( ∞∑
k=1

|⟨f, z2k−1⟩|p
′

) 1
p′

=

( ∞∑
k=1

∣∣∣∣∫ 1

0
f (x) 4 (1− x) sin2πkx dx

∣∣∣∣p′
) 1

p′

≤

≤ 4

( ∞∑
k=1

∣∣∣∣∫ 1

0
f̃ (x) sin2πkx dx

∣∣∣∣p′
) 1

p′

≤ 4C
∥∥∥f̃∥∥∥

Lp

≤ 4C∥f∥Lp
,

wheref̃ (x) = (1− x) f (x) is denoted. Hence the system {wn (x)}n∈Z+ is a p′−basis in
Lp (0, 1).

If p ∈ (2;+∞), then p′ ∈ (1; 2) and q = p, and again applying the Hausdorff-Young
inequality and taking into account the embedding Lp (0, 1) ⊂ Lp′ (0, 1), we obtain( ∞∑

n=0

|⟨f, zn⟩|p
) 1

p

≤ C∥f∥Lp′
≤ C∥f∥Lp

,

i.e. the system {wn (x)}n∈Z+ is a p -basis in Lp (0, 1).
Consider the case p = 2. According to the results of [19], the system { {wn (x)}n∈Z+

forms a Riesz basis with brackets in L2 (0, 1), where the lengths of the brackets are uni-
formly bounded (nk+1 − nk = 2, ∀k ∈ N). In addition, it follows from the previous rea-
soning that this system is almost normalized and uniformly minimal in L2 (0, 1). Thus, all
the conditions of Statement 1.4 are satisfied, according to which the system {wn (x)}n∈Z+

forms a Riesz basis in the space L2 (0, 1) . Theorem is proved.
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Let us return to the case α ̸= 0. As shown above, in this case the eigenfunctions of
the spectral problem (5) do not form a basis in any space Lp (0, 1) , 1 < p <∞. However,
from the linear combinations of the elements of this system, it is possible to compose a
new system, which will already be a basis in Lp (0, 1), and, accordingly, a Riesz basis in
L2 (0, 1) .

Following the work [1] we introduce to the consideration the following system

φ2k−1 (x) = u2k−1 (x) ;φ2k (x) = (u2k (x)− u2k−1 (x)) (2δk)
−1,∀k ∈ N, (17)

which is a linear combination of the system {un (x)}n∈N . It is valid the following

Theorem 4. The system {φn}n∈Z+ forms an equivalent to the system {wn}n∈Z+ basis
for Lp (0, 1) , 1 < p <∞, with biorthogonal system {ψn}n∈Z+ where

ψ2k−1 = ϑ2k + ϑ2k−1, ψ2k = 2δkϑ2k,∀k ∈ N. (18)

In particular, for p = 2 the system {φn}n∈Z+ forms a Riesz basis in L2 (0, 1) .

Proof. Let us show that the system of functions {φn}n∈Z+ forms a basis in Lp (0, 1) , 1 <
p < ∞. It is obvious that it is complete and minimal in this space. Completeness follows
from the completeness of the system {un}n∈Z+ in Lp (0, 1). The minimality of this system
follows from the fact that it has a biorthogonal system {ψn}n∈Z+ , defined by formula (18),
which is verified directly.

From formulas (17) we have

φ2k−1 (x)− w2k−1 (x) = 0;

φ2k (x) =
1

2δk
(sin ((2πk + 2δk)x) − sin2πkx ) =

=
sinδkx

δkx
· xcos ((2πk + δk)x) = (1 +O (δk))xcos2πkx

(
1 +O

(
δ2k
))

=

= xcos2πkx +O (δk) = w2k (x) +O

(
1

k

)
,

or

φ2k (x)− w2k (x) = O

(
1

k

)
.

As a result, we obtain that for any s, p ∈ (1,+∞) we have

∞∑
n=0

∥φn − wn∥sLp
< +∞, (19)

i.e. the systems {φn}n∈Z+ and {wn}n∈Z+ are s -close in the space Lp (0, 1).
On the other hand, according to Theorem 3.1, the system {wn}n∈Z+ is a q− basis in

Lp (0, 1), where q = max {p, p′} . Choosing s = q′ in (19), we obtain that the systems
{φn}n∈Z+ and {wn}n∈Z+ are q′−close. Thus, all the conditions of Theorem 1.1 are satisfied
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and therefore the system {φn}n∈Z+ forms a basis in Lp (0, 1), equivalent to the basis
{wn}n∈Z+ .

The second part of the theorem, which concerns the case p = 2, follows from the
fact that according to Theorem 3.1 in this case the system {wn}n∈Z+ is a Riesz basis in
L2 (0, 1), and the system equivalent to the Riesz basis is itself a Riesz basis. The theorem
is proved.

Corollary 2. The system {φn}n∈Z+ is a q−basis in Lp (0, 1) , 1 < p < ∞, where q =
max {p, p′} .
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