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Nodal solutions of nondifferentiable perturbations of some
fourth-order half-linear boundary value problem
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Abstract. In this paper, we consider nondifferentiable perturbations of a certain half-linear
boundary value problem for ordinary differential equations of the fourth order. Using the re-
sults of global bifurcation for the corresponding nonlinear half-eigenvalue problems, we show the
existence of nodal solutions of the considered problem.
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1. Introduction

Consider the following nonlinear boundary value problem

ℓy ≡ (p (x) y′′)′′ − (q(x)y′)′ + r(x)y = χτ(x)h(y) + α(x)y+ + β(x)y−, x ∈ (0, l),
(1.1)

y(0) = y′(0) = y(l) = y′(l) = 0, (1.2)

where p (x) is a positive twice continuously differentiable function on [0, l], q(x) is a non-
negative continuously differentiable function on [0, l], r(x) is a real-valued continuous func-
tion on [0, l], τ(x) is a positive continuous function on [0, l], α(x) and β(x) are real-valued
continuous functions on [0, l] such that α(x) ̸≡ −β(x). The functions h has the form
h = f + g, where the real-valued functions f and g are continuous on R and satisfy the
following conditions: there exists a positive constant M such that

|f(s)|
|s|

≤M, s ∈ R, s ̸= 0; (1.3)

there exists positive constants g0 and g∞ such that

lim
|s|→0+

g(s)

s
= g0 and lim

|s|→+∞

g(s)

s
= g∞. (1.4)
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Nonlinear boundary value problems for ordinary differential equations of fourth order
arise in the mathematical modeling of various processes in mechanics, physics, and other
areas of natural science. Note that problem (1.1), (1.2) describes small bending vibrations
of an inhomogeneous beam, in the cross sections of which a longitudinal force acts and
both ends of which are rigidly fixed (see, e.g., [15]).

Note that in the papers of many authors the existence of nodal solutions to nonlinear
boundary value problems for ordinary differential equations of the second and fourth orders
was investigated (see [2, 3, 5-12, 14, 16] and references therein). Using various methods,
they established the conditions under which exist solutions with a fixed oscillation count of
the nonlinear problems under consideration. Should be noted that in [4, 6, 14] established
the existence of nodal solutions of nonlinear perturbations of half-linear boundary value
problems.

In this paper, we consider the question of the existence of nodal solutions to problem
(1.1), (1.2), depending on the parameter χ. Under some additional conditions on the data
of this problem, using the bifurcation technique, we establish intervals of this parameter
in which there are solutions to problem (1.1), (1.2), contained in classes of functions with
a fixed number of simple nodal zeros.

2. Preliminary

Let (b.c.) be the set of functions y ∈ C1[0, l] satisfying the boundary conditions (2).

By E we denote the Banach space C3[0, l] ∪ (b.c.) with the norm ||y||3 =
3∑

j=0
||y(j)||∞,

where ||y||∞ = max
x∈[0,l]

|y(x)|.

From on ν we will denote either + or −; − ν we will denote the opposite sign to ν.
For each k ∈ N and each ν let Sν

k be the set of functions of the space E constructed in
[1, § 3] using the Prüfer-type transformation. Note that these classes consist of functions
having the oscillatory properties of eigenfunctions (and their derivatives) of the linear
spectral problem which obtained from the half-linear problem{

ℓ(y) ≡ λτ(x)y + α(x)y+ + β(x)y−, x ∈ (0, l),
y ∈ (b.c.).

(2.1)

by setting α ≡ β ≡ 0.
We have the following oscillation theorem for problem (2.1).
Theorem 2.1 [6, Theorem 2.1] (see also [14, Theorem 3.3]. There exist two unbounded

sequences {λ+k }
∞
k=1 and {λ−k }

∞
k=1 of simple half-eigenvalues of problem (2.1) such that

λ+1 < λ+2 < . . . < λ+k < . . . and λ−1 < λ−2 < . . . < λ−k < . . . ;

the half-eigenfucntions y+k and y−k corresponding to the half-eigenvalues λ+k and λ−k lie
in S+

k and S−
k , respectively. Furthermore, aside from solutions on the collection of the
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half-lines {(λ+k , ty
+
k ) : t > 0} and {(λ−k , ty

−
k ) : t > 0} and trivial ones, problem (2.1) has

no other solutions.
By (1.4) for the function g we have the following representations:

g(s) = g0s+ s ξ(s) and g(s) = g∞s+ sζ(s), s ∈ R, s ̸= 0, (2.2)

where
lim

|s|→0+
ξ(s) = 0 and lim

|s|→+∞
ζ(s) = 0. (2.3)

Remark 2.1. We can extend ξ to s = 0 by ξ(0) = 0, and consequently, ξ ∈ C(R).
Let

φ(s) = sξ(s) and ϕ(s) = sζ(s), s ∈ R. (2.4)

Then it follows from (2.3) that

lim
|s|→0+

φ(s)

s
= 0 and lim

|s|→+∞

ϕ(s)

s
= 0. (2.5)

Remark 2.2. By Remark 2.1 we have φ ∈ C(R) and φ(0) = 0. In other hand by
(2.2) and (2.4) we get

ϕ(s) = g0s− g∞s+ φ(s), s ∈ R,

which implies that ϕ ∈ C(R) and ϕ(0) = 0.
To establish the existence of nodal solutions to problem (1.1), (1.2) we need the fol-

lowing result.
Lemma 2.1. The following relations hold:

||φ(u)||∞ = o(||u||3) as ||u||3 → 0 (u ∈ E); (2.6)

||ϕ(u)||∞ = o(||u||3) as ||u||3 → 0 (u ∈ E); (2.7)

||f(u)||∞ ≤M ||u||∞ for any u ∈ E. (2.8)

Proof. We define the continuous functions

φ̃ : [0,+∞) → [0,+∞) and ϕ̃ : [0,+∞) → [0,+∞)

as follows:
φ̃(t) = max

0≤|s|≤t
|φ(s)| and ϕ̃(t) = max

0≤|s|≤t
|ϕ(s)|. (2.9)

Obviously, the functions φ̃ and ϕ̃ are nondecreasing on the half-interval [0,+∞). Hence
for any t ∈ (0,+∞) there exists s∗(t) ∈ (− t, t), s∗(t) ̸= 0, such that

φ̃(t) = max
0≤|s|≤t

|φ(s)| = |φ(s∗(t))|,

and consequently,
φ̃(t)

t
=

|φ(s∗(t))|
|s∗(t)|

|s∗(t)|
t

≤ |φ(s∗(t))|
|s∗(t)|

. (2.10)
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Since |s∗(t)| ≤ t, by (2.5), it follows from (2.10) that

lim
t→0+

φ̃(t)

t
= 0. (2.11)

By the first relation of (2.9) for any u ∈ E we get

|φ(u)|
||u||3

=
φ̃(|u|)|
||u||3

≤ φ̃(||u||∞)

||u||3
≤ φ̃(||u||3)

||u||3
,

whence implies that
||φ(u)||∞
||u||3

≤ φ̃(||u||3)
||u||3

. (2.12)

By (2.11) from (2.12) we obtain (2.6).

For any t ∈ (0,+∞) there exists s•(t) ∈ (− t, t), s•(t) ̸= 0, such that

ϕ̃(t) = max
0≤|s|≤t

|ϕ(s)| = |ϕ (s•(t))|.

Then by the second relation of (2.9) we get

ϕ̃(t)

t
=

|ϕ(s•(t))|
t

=
|ϕ(s•(t))|
|s•(t)|

|s•(t)|
t

≤ |ϕ(s•(t))|
|s•(t)|

. (2.13)

If t→ +∞, then either

(a) |s•(t)| → 0, or

(b) |s•(t)| → +∞, or

(c) there exist positive constants κ0 and κ∞ such that κ0 ≤ |s•(t)| ≤ κ∞.

By Remark 2.2 we have ϕ ∈ C(R), and consequently, there exists a positive constant
K such that

|ϕ(s)| ≤ K for any s ∈ R, κ0 ≤ |s| ≤ κ∞. (2.14)

In the case (a) by Remark 2.1 it follows from (2.13) that

ϕ̃(t)

t
=

|ϕ(s•(t))|
t

→ 0 as t→ +∞;

in the case (b) by the second relation of (2.5) from (2.13) we obtain

ϕ̃(t)

t
≤ |ϕ(s•(t))|

|s•(t)|
→ 0 as t→ +∞;

in the case (c) by (2.14) we get

ϕ̃(t)

t
=

|ϕ(s•(t))|
|s•(t)|

|s•(t)|
t

≤ K

κ0

κ1
t

→ 0 as t→ +∞.



46 M.M. Mammadova

Thus we show that
ϕ̃(t)

t
→ 0 as t→ +∞. (2.15)

Since the function ϕ̃ is nondecreasing on (0,+∞) for any u ∈ E, u ̸= 0, we have the
following relation

|ϕ(u)|
||u||3

≤ ϕ̃(|u|)
||u||3

≤ ϕ̃(||u||∞)

||u||3
≤ ϕ̃(|3|u||3)

||u||3
.

From the last relation we obtain

||ϕ(u)||∞
||u||3

≤ ϕ̃(|3|u||3)
||u||3

,

whence, by relation (2.13), implies (2.7).
Finally, due to (1.3) we get inequality (2.8). The proof of this lemma is complete.

3. Behavior of global continua of nontrivial solutions bifurcating from
zero and infinity of an auxiliary nonlinear half-eigenvalue problem

To investigate the existence of nodal solutions to problem (1.1), (1.2), we consider the
following nonlinear half-eigenvalue problem{

ℓ(y) = λχg0τ(x)y + α(x)y+ + β(x)y− + χτ(x)f(y) + χτ(x)φ(y), x ∈ (0, l),
y ∈ (b.c.).

(3.1)

Remark 3.1. Let χ ∈ R, χ ̸= 0, be fixed. Then the first relation of (2.5) shows that
(3.1) is a bifurcation from zero problem. Due to relations (2.6) and (2.8) of Lemma 2.1,
we can apply the results of Sections 2 and 3 of [7] to problem (3.1). Then, by Lemma 2.2
and Theorem 3.1 of [7], for each k ∈ N and each ν, there exists a component Cν

k of the
set of nontrivial solutions of problem (3.1) which bifurcates from Ik ×{0}, is contained in
R× Sν

k and is unbounded in R×E (in this case either Cν
k meet (λ,∞) for some λ ∈ R or

the projection of Cν
k onto R× {0} is unbounded), where

Iνk =

[
λ̃νk −

Nα +Nβ

χτ̃0
− M

g0
, λ̃νk +

Nα +Nβ

χτ̃0
+
M

g0

]
, (3.2)

λ̃+k and λ̃−k are k-th half-eigenvalues of the half-linear problem{
ℓ(y) = λχg0τ(x)y + α(x)y+ + β(x)y−, x ∈ (0, l),
y ∈ (b.c.).

(3.3)

τ̃0 = g0τ0, τ0 = min
x∈[0,l]

τ(x), Nα = max
x∈[0,l]

|α(x)|, Nβ = max
x∈[0,l]

|β(x)|.

By (3.3) it follows from (2.1) that

λνk = λ̃νkχg0 for each k ∈ N and each ν, (3.4)
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where λ+k and λ−k are k-th half-eigenvalues of the half-linear problem (2.1). Then, by (3.4),
from (3.2) we get

Iνk =

[
λ+k
χg0

−
Nα +Nβ

χg0τ0
− M

g0
,
λνk
χg0

+
Nα +Nβ

χg0τ0
+
M

g0

]
. (3.5)

Remark 3.2. By the second relations of (2.2) and (2.4), we rewrite problem (3.1) in
the following form

ℓ(y) =
(
λ+ g∞

g0
− 1

)
χg0τ(x)y + α(x)y+ + β(x)y− + χτ(x)f(y)+

+χτ(x)ϕ(y), x ∈ (0, l),
y ∈ (b.c.).

(3.6)

The second relation of (2.5) shows that problem (3.6) is a bifurcation at infinity problem.
By the relations (2.6)-(2.8) of Lemma 2.1, we can apply the results of [6, Section 3] and [8,
Section 3] to problem (3.6). Then, by [8, Theorem 3.1 and Theorem 3.2], for each k ∈ N
and each ν, there exists a component Dν

k of the set of nontrivial solutions of problem (3.6)
which emanates from Jk × {∞}, is contained in R × Sν

k and either meets (λ, 0) for some
λ ∈ R or its projection onto R× {0} is unbounded, where

Jν
k =

[
λ̄νk −

Nα +Nβ

τ̃0
− M

g0
, λ̄νk +

Nα +Nβ

τ̃0
+
M

g0

]
, (3.7)

λ̄+k and λ̄−k are k-th half-eigenvalues of the half-linear problem{
ℓ(y) =

(
λ+ g∞

g0
− 1

)
χg0τ(x)y + α(x)y+ + β(x)y−, x ∈ (0, l),

y ∈ (b.c.).
(3.8)

By (3.8) it follows from (2.1) that for each k ∈ N and each ν the relation

λνk =

(
λ̄νk +

g∞
g0

− 1

)
χg0

holds. Then it follows from last relation that

λ̄νk =
λνk
χg0

− g∞
g0

+ 1.

Consequently, from (3.7) we obtain

Jν
k =

[
λνk
χg0

−
Nα +Nβ

χg0τ0
− g∞ +M

g0
+ 1,

λνk
χg0

+
Nα +Nβ

χg0τ0
− g∞ −M

g0
+ 1

]
. (3.9)

We have the following result.
Lemma 3.2. If Cν

k meets (λ,∞) for some λ ∈ R, then λ ∈ Jk, and if Dν
k meets (λ, 0)

for some λ ∈ R, then λ ∈ Ik.
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The proof of this lemma follows from [7, Lemma 2.2] and [8, Remark 3.2] (see also [13,
Theorem 3.3]) due to the above arguments.

Lemma 3.2. For each k ∈ N and each ν, the projection of Cν
k and Dν

k onto R × {0}
are bounded.

Proof. Let k ∈ N and ν are arbitrary fixed and let (λ̂, ŷ) ∈ R× Sν
k be the solution of

problem (2.15), where |λ| is large enough.
We introduce the following notations:

ψ̂(x) =

{
f(ŷ(x))
ŷ(x) if ŷ(x) ̸= 0,

0 if ŷ(x) = 0,
, and ξ̂(x) = ξ(ŷ(x)), x ∈ [0, l]. (3.10)

Then λ = λ̂νk, where λ̂
ν
k is the k-th half-eigenvalue of the half-linear problem{

ℓ(y) = λχg0τ(x)y + a(x)y+ + b(x)y− + χτ(x)(ψ̂(x) + ζ̂(x))y, x ∈ (0, l),
y ∈ (b.c.).

(3.11)

In view of condition (1.3) by the first notation of (3.10) we obtain

|ψ̂(x)| ≤M, x ∈ [0, l]. (3.12)

It follows from relations (2.2) and (2.4) that

ξ(s) = g∞ − g0 + ζ(s), s ∈ R.

Since ζ ∈ C(R) by (2.3) there exists a positive constant L such that

|ζ(s)| ≤ L|s|, s ∈ R.

which, by the second relation of (3.10), implies that

|ξ̂(x)| ≤ L, x ∈ [0, l]. (3.13)

Then, in view of (3.12) and (3.13), it follows from [3, relation (2.16)] that

|λ̂νk − λνk| ≤
Nα +Nβ

χg0τ0
+
M + L

g0
. (3.14)

Therefore, we have the following estimate

|λ̂| = |λ̂νk| ≤ |λ̂νk − λνk|+ |λνk| ≤ |λνk|+
Nα +Nβ

χg0τ0
+
M + L

g0
,

which contradicts the fact that |λ̂| is large enough.
Thus, we have shown that the projection of Cν

k onto R× {0} is bounded. In a similar
way it can be shown that the projection of Dν

k onto R × {0} is also bounded. The proof
of this lemma is complete.

Corollary 3.1. For each k ∈ N and each ν the components Cν
k and Dν

k of the set of
nontrivial solutions of problem (3.1) coincide.

Thus, by Corollary 3.1, we have the following result.
Theorem 3.1. For each k ∈ N and each ν the component Cν

k of the set of nontrivial
solutions to problem (3.1) is contained in R × Sν

k and meets the intervals Ik × {0} and
Jk × {∞}.



Nodal solutions of nondifferentiable perturbations 49

4. Existence of nodal solutions to problem (1.1), (1.2)

The following theorem is the main result of this paper.

Theorem 4.1. Let the following conditions hold:

(i) g0 > M and g∞ > M ;

(ii) for some k ∈ N and some ν, λνk −
Na+Nb

τ0
> 0, and either

λνk
g0 −M

+
Nα +Nβ

τ0(g0 −M)
< χ <

λνk
g∞ +M

−
Nα +Nβ

τ0(g∞ +M)
, (3.15)

or
λνk

g∞ −M
+

Nα +Nβ

τ0(g∞ −M)
< χ <

λνk
g0 +M

−
Nα +Nβ

τ0(g0 +M)
. (3.16)

Then there exists a solution υνk of problem (1.1), (1.2) such that υνk ∈ Sν
k , i.e. the function

υνk has exactly k − 1 simple nodal zeros in the interval (0, l).

Proof. It is obvious that any nontrivial solution (λ, y) ∈ R×E with λ = 1 of problem
(3.1) is a nontrivial solution of problem (1.1), (1.2). Then, according to Theorem 3.1, if
for some k ∈ N the right end of the interval Ik is to the left of 1 and the left end of the
interval Jk is to the right of 1 on the real axis, or the right end of the interval Jk is to
the left of 1 and the left end of the interval Ik is to the right of 1 on the real axis, then
problem (1.1), (1.2) will have a solution that is contained in the class Sν

k .

Let conditions (i) and (ii) of this theorem be satisfied. If (3.15) holds, then we have
the following relations

λνk
g0 −M

+
Nα +Nβ

τ0(g0 −M)
< χ and χ <

λνk
g0 +M

−
Nα +Nβ

τ0(g0 +M)
,

which implies that

λνk
χg0

+
Nα +Nβ

χg0τ0
+
M

g0
< 1 and 0 <

λνk
χg0

−
Nα +Nβ

χg0τ0
− g∞ +M

g0
. (3.17)

From (3.17) we obtain

λνk
χg0

+
Nα +Nβ

χg0τ0
+
M

g0
< 1 <

λνk
χg0

−
Nα +Nβ

χg0τ0
− g∞ +M

g0
+ 1,

which show that the right end of the interval Ik is to the left of 1, and the left end of the
interval Jk is to the right of 1 on the real axis.

If (3.16) is satisfied, then it can be shown in a similar way that the right end of the
interval Jk is to the left of 1, and the left end of the interval Ik is to the right of 1 on the
real axis. The proof of this theorem is complete.
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