Caspian Journal of Applied Mathematics, Ecology and Economics V. 6, No 2, 2018, December ISSN 1560-4055

About Econometric Analysis of Factors Affecting the Change in the USD/AZN Rate

E.G. Orudzhev, L.M. Mamedova, O.E. Suleymanov^{*}

Abstract. In the study, on the basis of real indicators covering the period from 01.01.2013 to 10.01.2017 [10], an econometric analysis of changes in the USD/AZN rate was conducted. As a result of study, the dependence of several factors provided a serious influence on the change in the USD/AZN rate and the relationship of interdependence with their endogenous variability were gained by carrying out empirical analysis. Verification of the optimality and adequacy of the model is tested using the tools of the software package Eviews. To build a regression equation for the model and test its coefficient of determination, F-Fisher statistics, t – Student criterion, etc., the execution of the Quick \rightarrow Equation order of the Eviews software package is considered, to check the stationarity of factors, the execution of the test order Quick \rightarrow Series statistics \rightarrow Unit root and as a result, conclusions were drawn and recommendations were made for a predictive-analytical computing system.

Key Words and Phrases: Regression, correlation, determination, F-Fisher statistics, t-Student criterion, prediction, VAR, inpatient, Unit root test

JEL code: C10; C12; C13; C14; C15; C22; C32; C51; C53

The exchange rate in the system of international economic relations is a tool of dependence on the value indicators of world and national markets. The exchange rate, as an important component of the world monetary system, is one of the factors affecting the macroeconomic position of each country. The dynamics of the exchange rate, amplitude and frequency of its changes are clear evidence of the economic and political stability of the country. Formation of the exchange rate is a multifactorial process. These factors can be predictable and unpredictable internal and external factors, structural and opportunistic factors. The factors shaping exchange rates are fairly mobile, and their mutual influence can either strengthen or even neutralize the effect on the exchange rate. It should be noted that multifactor dependencies and other macroeconomic processes relevant to the case research were studied in relation to some fundamental economic indicators (for example, [7, 8, 9]). However, for the first time, an analysis of the correlation-regression dependence of the influence of factors with delay on the change in the USD / AZN exchange rate and the construction of the corresponding models are being studied.

http://www.cjamee.org

© 2013 CJAMEE All rights reserved.

^{*}Corresponding author.

To build an econometric optimal model for changes in the USD / AZN exchange rate, at first each of the factors that can influence it was considered separately, and a general regression equation was established (Table 1).

Table 1

Dependent Variable: USD_AZN
Method: Least Squares
Date: 03/26/18 Time: 08:26
Sample: 2014M02 2017M10
Included observations: 45

Variable	Coefficien	Std. Error	t-Statistic	Prob.
	t			
С	1.096385	1.150521	0.952946	0.3478
GDP	1.88E-05	2.21E-05	0.847511	0.4030
TRADE_BALANCE	0.004072	0.007142	0.570128	0.5726
REPO_INTEREST	-0.012209	0.023162	-0.527117	0.6017
OIL	0.000560	0.001666	0.336206	0.7389
EXPORT	-0.004078	0.007136	-0.571378	0.5717
INFLATION	0.018750	0.008356	2.244049	0.0319
INPORT	0.003977	0.007132	0.557633	0.5810
GBP_EUR	0.452617	0.531777	0.851141	0.4010
FED	-0.044484	0.097009	-0.458554	0.6497
INTEREST	0.023441	0.028851	0.812476	0.4225
COUNTER_REPO_INTER	0.038649	0.007609	5.079250	0.0000
EUR_USD	-0.938357	0.461383	-2.033791	0.0503
R-squared	0.975141	Mean depen	dent var	1.254932
Adjusted R-squared	0.965819	S.D. depend	ent var	0.396210
S.E. of regression	0.073251	Akaike info	criterion	-2.152987
Sum squared resid	0.171705	Schwarz criterion		-1.631063
Log likelihood	61.44222	Hannan-Qui	nn criter.	-1.958419
F-statistic	104.6065	Durbin-Wate	son stat	2.537828
Prob(F-statistic)	0.000000			

Table 1 summarizes both its own grades and the probable grades of several tests. Let's analyze some tests in the table separately. As you can see, the coefficient of determination (*R*-squared) and the adjusted coefficient of determination (Adjusted *R*-squared) are very large. This means that the factor signs of the coefficients of the established regression equation can explain 96–97% of the signs of the result. Let's take a look at the *F*-Fisher test. Since the probability value (F-statistic = 104.6, the probability value p = 0) is much less than $\alpha = 0.05$, we can consider the factors of the model as valid. Let's take a look at the Durbin-Watson test (DW = 2.54). If we compare the results obtained here with tabular prices, we must say that the existence of negative autocorrelation of residuals ($d_l = 0.79, d_u = 2.044, 4 - d_l = 2.21$ and $4 - d_u = 1.956$; $4 - d_l < 2.54 < 4$) accepted.

As a result of the study, let's analyze the question of whether the model in Table 2 was the optimal model that was established with the introduction of the Least Squares Method.

Dependent Variable: USD_AZN_D Method: Least Squares Table 2

101

Date: 10/29/18 Time: 12:38 Sample (adjusted): 2014M03 2017M10 Included observations: 44 after adjustments							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	0.000537	0.022135	0.024280	0.9808			
EUR_USD_D(-1)	-1.281899	0.311269	-4.118302	0.0002			
FED_D(-1)	0.233846	0.113924	2.052647	0.0470			
INFLATION_D(-1)	0.050949	0.005287	9.636359	0.0000			
OIL	0.003686	0.001505	2.449618	0.0190			
OIL(-1)	-0.003686	0.001441	-2.557816	0.0146			
R-squared	0.798188	Mean depende	ent var	0.020143			
Adjusted R-squared	0.771634	S.D. dependen	it var	0.099869			
S.E. of regression	0.047725	Akaike info crit	terion	-3.120601			
Sum squared resid	0.086552	Schwarz criterion		-2.877302			
Log likelihood	74.65321	Hannan-Quinn	criter.	-3.030374			
F-statistic	30.05882	Durbin-Watsor	n stat	2.043172			
Prob(F-statistic)	0.000000						

The analytical form of the model is as follows:

$$y_t = 0.0005 - 1.28x_{1,t-1} + 0.23x_{2,t-1} + 0.051x_{3,t-1} + 0.0037x_{4,t} - 0.0037x_{4,t-1}$$

Here: x_1 is the first difference in the course of the EUR / USD exchange rate, x_2 is the 1st difference FED, x_3 is the first difference of inflation, and x_4 is the indicator of oil prices. In addition, t represents the value of the indicator itself, and t - 1 represents the value of the delay from the 1st power.

Let us explain the results obtained in Table 2. If we look at the t-Student criteria for each of the factors of the model individually, we will see that the probability of all factors outside the constant c is less than 5%. This means that the model is individually significant for each factor. In general, let's look at the F-Fisher test statistics to check the importance of the model. As you can see, the probability is close to 0, which means that the model is usually considered important. In addition, since the Durbin Watson test model is close to 2, it can be said that there is no autocorrelation model (other tests were considered to check for the presence of autocorrelation). The coefficient of determination $(R^2 = 79.8188\%)$ means the disclosure of about 80% of the model, which is not considered to be quite important. The main reason for this is that there is another factor that can affect fluctuations in the exchange rate of the US dollar / manat. Whether the constructed model is optimal is tested by the following tests. The correlation coefficients of all factors were calculated in the **multicollinearity** test, and the following results were obtained as a result of the Quick \rightarrow Group statistics \rightarrow Correlations command of the Eviews software test (Table 3):

Table 3

	Trade_b alance	GDP	REPO_INTE REST	OIL	EXPORT	IMPORT	INFLATIO N	GBP_EUR	FED	INTEREST	EUR_USD	COUNTER_REPO _INE TEREST
Trade_balance	1,000	0,039	-0,361	0,858	0,931	-0,211	-0,594	-0,030	-0,391	-0,354	0,803	-0,471
GDP	0,039	1,000	0,555	0,004	0,068	0,078	0,386	-0,590	0,564	0,584	0,027	0,454
REPO_INTEREST	-0,361	0,555	1,000	-0,322	-0,398	-0,087	0,833	-0,782	0,796	0,990	-0,408	0,892
OIL	0,858	0,004	-0,322	1,000	0,881	0,037	-0,596	-0,120	-0,376	-0,305	0,902	-0,400
EXPORT	0,931	0,068	-0,398	0,881	1,000	0,160	-0,644	-0,065	-0,352	-0,365	0,872	-0,486
IMPORT	-0,211	0,078	-0,087	0,037	0,160	1,000	-0,116	-0,09€	0,118	-0,020	0,162	-0,02€
INFLATION	-0,594	0,386	0,833	-0,596	-0,644	-0,116	1,000	-0,597	0,843	0,846	-0,582	0,908
GBP_EUR	-0,030	-0,590	-0,782	-0,120	-0,065	-0,096	-0,597	1,000	-0,694	-0,825	-0,154	-0,763
FED	-0,391	0,564	0,796	-0,376	-0,352	0,118	0,843	-0,694	1,000	0,840	-0,316	0,821
INTEREST	-0,354	0,584	0,990	-0,305	-0,365	-0,020	0,846	-0,825	0,840	1,000	-0,366	0,919
EUR_USD	0,803	0,027	-0,408	0,902	0,872	0,162	-0,582	-0,154	-0,316	-0,366	1,000	-0,421
COUNTER_REPO_INET EREST	-0,471	0,454	0,892	-0,400	-0,486	-0,026	0,908	-0,763	0,821	0,919	-0,421	1,000

Let's explain the results. In (Table 3), the highest value is the correlation coefficient of interest rates with repo percentage. That is, these indicators explain 99% of each other. The high correlation coefficient is evidence of the multicollinearity problem in the embedded model, demonstrating a strong correlation between the indicators. To eliminate multicollinearity, at least one of these factors should be excluded. To do this, review the t-Student values for both indicators in (Table 1). Note that among these two factors, the value of the t-Student criterion is higher at the repo rate. Therefore, this factor should be excluded from the model. Once the factor was removed, the model was re-modeled, and the results were closer to the results in Table 1. Thus, this rule excludes several other factors from the model.

Stationarity. One of the most important tasks is to test the stationarity of an optimal econometric model. Thus, for each factor, the stationary test in the Eviews software package was checked by the Quick \rightarrow Series statistics \rightarrow Unit root tests command to determine that several factors (including FED, Inflation, EUR / USD, etc.), are considered to be non- stationary , oil (at the level of 10% significance) and the trade balance are considered stationary.

Granger test. The overall result, including all factors included in the regression equation, was first used to process this test for a computer package. The main goal here is to check, with the removal of multicollinearity, whether Granger is the cause of the USD / AZN indicators of all factors, including the excluded factors. The Eviews software package revealed Granger's causal relationship for 5 factors that directly or indirectly affect the change in the USD / AZN exchange rate, so the test results can be compiled in the following table (Table 4) compactly. The (+) sign is a causal link, and (-) indicates the absence of this link).

Table 4

	Granger Causality Tests						
EUR/USD	→ -	USD/AZN	EUR/USD	→ -	USD/AZN		
USD/AZN		EUR/USD	USD/AZN	→ -	EUR/USD		
FED	\rightarrow +	USD/AZN	FED	\rightarrow +	USD/AZN		
USD/AZN	→ -	FED	USD/AZN	→ -	FED		
İnflation	→ +	USD/AZN	İnflation	→ +	USD/AZN		
USD/AZN	→ _	İnflation	USD/AZN	→ -	İnflation		
Oil	→ +	USD/AZN	Oil	→ +	USD/AZN		
USD/AZN	→ -	Oil	USD/AZN	→ -	Oil		
Trade balance	\rightarrow +	USD/AZN	Trade balance	→ +	USD/AZN		
USD/AZN	→ -	Trade balance	USD/AZN	→ -	Trade balance		
EUR/USD	→ -	FED	EUR/USD	→ -	FED		
FED	→ -	EUR/USD	FED	→ -	EUR/USD		
EUR/USD	→ +	İnflation	EUR/USD	→ +	İnflation		
İnflation	→ -	EUR/USD	İnflation	→ -	EUR/USD		
EUR/USD	→	Oil	EUR/USD	→	Oil		

Note that the check of this test is carried out on the basis of the probable value of α (prob) and is estimated by the probability $\alpha = 5\%$. If we look at the values of the probabilities, we get that FED ($\alpha = 0.13\%$), Oil ($\alpha = 4.64\%$), Inflation ($\alpha = 1,256 \cdot 10^{-9}\%$) can be counted as a Granger-cause of USD / AZN. In addition, we note that the oil exchange rate ($\alpha = 0.69\%$) and the EUR / USD exchange rate are the Granger-cause of oil ($\alpha = 0.23\%$) and inflation ($\alpha = 4.51\%$).

Testing heteroscedasticity. Let's look at the implementation of the White test [3, pp. 386-387] to test heteroscedasticity (Table 5).

Table 5

Heteroskedasticity Test: White							
F-statistic	1.710014	Prob. F(18.25)		0.1061			
Obs*R-squared	24.27976	Prob. Chi-Square	e(18)	0.1461			
Scaled explained SS	42.40716	Prob. Chi-Square	e(18)	0.0010			
Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/29/18 Time: 13:08 Sample: 2014M03 2017M10 Included observations: 44 Collinear test regressors dropped from	n specification						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
с	0.011034	0.013201	0.835844	0.4112			
EUR_USD_D(-1)^2	1.800454	1.572769	1.144767	0.2631			
EUR_USD_D(-1)*FED_D(-1)	-6.915193	6.724561	-1.028349	0.3136			
EUR USD D(-1)*INFLATION D(-1)	0.159528	0.061246	2.604691	0.0153			
EUR USD D(-1)*OIL	-0.025398	0.013356	-1.901649	0.0688			
EUR USD D(-1)*OIL(-1)	0.024083	0.013136	1.833325	0.0787			
EUR USD D(-1)	0.085939	0.131043	0.655809	0.5179			
FED_D(-1)^2	7.341197	8.748055	0.839180	0.4093			
FED D(-1)*INFLATION D(-1)	-0.135257	0.153497	-0.881172	0.3866			
FED D(-1)*OIL	-0.035316	0.042686	-0.827330	0.4159			
INFLATION D(-1)^2	0.000993	0.002324	0.427231	0.6729			
INFLATION D(-1)*OIL	-0.001207	0.000845	-1.427448	0.1658			
INFLATION D(-1)*OIL(-1)	0.001109	0.000696	1.594613	0.1234			
INFLATION D(-1)	0.013920	0.012300	1.131683	0.2685			
OIL^2	6.10E-05	3.16E-05	1.927163	0.0654			
OIL*OIL(-1)	-0.000121	6.48E-05	-1.858851	0.0749			
OIL	2.60E-05	0.000701	0.037124	0.9707			
OIL(-1)^2	6.20E-05	3.45E-05	1.796556	0.0845			
OIL(-1)	-0.000378	0.000730	-0.518380	0.6088			
R-squared	0.551813	Mean dependen	t var	0.001967			
Adjusted R-squared	0.229118	S.D. dependent	var	0.004306			
S.E. of regression	0.003781	Akaike info crite	rion	-8.019412			
Sum squared resid	0.000357	Schwarz criterion		-7.248967			
Log likelihood	195.4271	Hannan-Quinn c	riter.	-7.733694			
F-statistic	1.710014	Durbin-Watson	stat	1.768087			
Prob(F-statistic)	0.106141						
				-			

The model is considered to be homoscedastic, since the significance level of trial prices in the upper right-hand corner of the table exceeds 5% significance level.

To test the autocorrelation of the residual model, 2 tests are used for the Q-statistical (AR) and Serial L_m tests (MA). To verify the accuracy of the hypothesis of the absence of autocorrelation, consider the following tables (Tables 6 and 7):

Table 6

	AC	PAC	Q-Stat	Prob
1	-0.024	-0.024	0.0277	0.868
2	-0.078	-0.078	0.3173	0.853
3	-0.121	-0.126	1.0458	0.790
4	0.000	-0.014	1.0458	0.903
5	0.186	0.169	2.8325	0.726
6	-0.147	-0.159	3.9856	0.679
7	0.009	0.028	3.9899	0.781
8	-0.026	-0.003	4.0277	0.855
9	-0.005	-0.042	4.0294	0.909
10	-0.047	-0.084	4.1620	0.940
11	-0.026	0.022	4.2033	0.964
12	-0.105	-0.163	4.9027	0.961
13	-0.125	-0.149	5.9191	0.949
14	0.077	0.064	6.3210	0.958
15	0.027	-0.010	6.3714	0.973
16	0.011	-0.048	6.3799	0.983
17	-0.094	-0.034	7.0399	0.983
18	0.074	0.092	7.4618	0.986
19	0.026	-0.065	7.5173	0.991
20	0.006	0.013	7.5204	0.995

Table 7

Breusch-God frey Serial Correlation LM Test:

F-statistic	0.250479	Prob. F(4,34)		0.9074	
Obs*R-squared	1.259484	Prob. Chi-Squa	are(4)	0.8682	
Test Equation:					
Dependent Variable: RE	SID				
Method: Least Squares					
Date: 10/29/18 Time: 13	3:16				
Sample: 2014M03 2017	M10				
Included observations: 4	4				
Presample missing value	e lagged residual	s set to zero.			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-0.001815	0.023200	-0.078220	0.9381	
EUR_USD_D(-1)	-0.136491	0.358360	-0.380876	0.7057	
FED_D(-1)	-0.020787	0.126753	-0.163999	0.8707	
INFLATION_D(-1)	0.000974	0.005747	0.169497	0.8664	
OIL	0.000492	0.001665	0.295244	0.7696	
OIL(-1)	-0.000458	0.001595	-0.287320	0.7756	
RESID(-1)	-0.051468	0.177744	-0.289564	0.7739	
RESID(-2)	-0.119908	0.192764	-0.622047	0.5381	
RESID(-3)	-0.148864	0.179426	-0.829668	0.4125	
RESID(-4)	-0.031735	0.186675	-0.170003	0.8660	
R-squared	0.028625	Mean depende	ent var	5.78E-17	
Adjusted R-squared	-0.228504	S.D. depender	nt var	0.044865	
S.E. of regression	0.049727	Akaike info crit	terion	-2.967825	
Sum squared resid	0.084074	Schwarz criter	ion	-2.562327	
Log likelihood	75.29214	Hannan-Quinn	criter.	-2.817447	
F-statistic	0.111324	Durbin-Watsor	n stat	1.977868	
Prob(F-statistic)	0.999211				

Here, the null hypothesis is that there is no autocorrelation, and an alternative hypothesis is the existence of autocorrelation.

Table 6 shows that this model was tested for an autoregressive model with 20 lags

and received more than 5% for each lag (the lowest probability was observed at the 6th delay $\alpha = 67.9\%$). This means that the model we establish indicates acceptance of the null hypothesis as a result of the Q-statistical test (i.e. there is no autocorrelation in the model we established).

Now let's explain the results of Table 7. Here the null hypothesis is the absence of autocorrelation of residuals, and the alternative hypothesis is the existence of autocorrelation of residues. Remind that the results of this test, as a rule, are checked with 5% probable accuracy. To verify the test, 4 lag cases were considered. When choosing the optimal variant, the condition is assumed that the probable value, like the Q-statistical test, will be more than 5%. As can be seen from the table, the probable values are rather large than the 5% probability values. If we specify the result with the hypothesis, the results will be the adoption of the null hypothesis and the failure of the alternative hypothesis. That is, there is no autocorrelation of residuals on the model.

To determine which lags are included in the model, the VAR is selected in the Eviews software package instead of the Equation tool, and by executing the Lag sturucture \rightarrow Lag length criteria command in an open window, a new table is formed (Table 8).

Table 8

Exogeno variables Date: 10 Time: 20	/21/18 0:16		•			
2013M01	1					
2017M10	כ					
Included	observations: 4	D				
	LogL	LR	FPE	AIC	SC	HQ
Lag						
Lag 0	-337.8910	NA	1.182168	17.19455	17.44788	17.28615
Lag 0 1	-337.8910 -234.2502	NA 171.0073*	1.182168 0.041052*	17.19455 13.81251	17.44788 15.58584*	17.28615 14.45369*
0 1 2	-337.8910 -234.2502 -203.5986	NA 171.0073* 41.37970	1.182168 0.041052* 0.060773	17.19455 13.81251 14.07993	17.44788 15.58584* 17.37325	17.28615 14.45369* 15.27069
Lag 0 1 2 3	-337.8910 -234.2502 -203.5986 -174.9210	NA 171.0073* 41.37970 30.11149	1.182168 0.041052* 0.060773 0.124541	17.19455 13.81251 14.07993 14.44605	17.44788 15.58584* 17.37325 19.25936	17.28615 14.45369* 15.27069 16.18639
Lag 0 1 2 3 4	-337.8910 -234.2502 -203.5986 -174.9210 -114.4260	NA 171.0073* 41.37970 30.11149 45.37126	1.182168 0.041052* 0.060773 0.124541 0.081436	17.19455 13.81251 14.07993 14.44605 13.22130	17.44788 15.58584* 17.37325 19.25936 19.55460	17.28615 14.45369* 15.27069 16.18639 15.51122

* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level) FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz

information criterion

HQ: Hannan-Quinn information criterion

4th of the star symbols indicate an inevitable delay to the 1st degree, and 1 to a delay to the 5th degree. Since the first lag is taken basic by the 4th criteria, the model was re-estimated using the least squares method, introducing the 1st lag (Table 9).

Table 9

Dependent Variable: USD Method: Least Squares Date: 10/21/18 Time: 20 Sample (adjusted): 2014 Included observations: 4	D_AZN_D :22 M03 2017M10 4 after adjustmen	ts		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C USD_ZN_D(-1) EUR_USD_D EUR_USD_D(-1) FED_D(-1) INFLATION_D INFLATION_D(-1) OIL OIL(-1) TRADE_BALANCE TRADE_BALANCE(-1)	0.038211 -0.074854 0.054378 -1.435419 -0.106016 0.210132 -0.004672 0.049029 0.003844 -0.004556 8.98E-06 1.94E-05	0.048931 0.086008 0.359104 0.353779 0.122313 0.005978 0.005978 0.0015947 0.001667 0.001916 3.75E-05 3.73E-05	0.780918 -0.870312 0.151426 -4.057385 -0.866763 1.652850 -0.781536 8.243755 2.305641 -2.377944 0.239448 0.520867	0.4406 0.3906 0.0003 0.3925 0.1081 0.4402 0.0000 0.0278 0.0236 0.8123 0.6060
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.814241 0.750386 0.049896 0.079667 76.47669 12.75146 0.000000	Mean dependent S.D. dependent Akaike info criter Schwarz criterior Hannan-Quinn c Durbin-Watson s	t var var rion n riter. tat	0.020143 0.099869 -2.930759 -2.444162 -2.750305 1.996700

Although the results are considered normal by many criteria, the results of the t-Student test are not considered acceptable. To eliminate this drawback, we need to remove some factors from the model. After subtracting the negative factors, we get the results of the optimal model, i.e. Table 2.

Forecasting. The following operations must be performed sequentially to make predictions through the built model:

First, the regression equation for the model is again set. The main difference between this regression equation and the original regression equation is that the equation is not executed for all observed moments, but from the time it starts to the moment when the observation prices at that moment are used for forecasting. The results for the newly created regression equation are shown below (Table 10):

Table 10

5D_AZN_D 20:58 14M03 2016M0 28 after adjus	6 tments		
Coefficient	Std. Error	t-Statistic	Prob.
0.008925	0.019400	0.460057	0.6500
-0.972143	0.283976	-3.423321	0.0024
0.640711	0.476624	1.344271	0.1926
0.042808	0.011207	3.819926	0.0009
0.001839	0.001208	1.521712	0.1423
-0.001931	0.001166	-1.656244	0.1119
0.925163	Mean depender	nt var	0.025246
0.908155	S.D. dependent	var	0.115460
0.034991	Akaike info crite	erion	-3.680029
0.026937	Schwarz criterion		-3.394556
57.52040	Hannan-Quinn	criter.	-3.592757
54.39447	Durbin-Watson	stat	2.136338
0.000000			
	SD_AZN_D 20:58 4fter adjus 28 after adjus Coefficient 0.008925 -0.972143 0.640711 0.042808 0.001839 -0.001931 -0.925163 0.925163 0.925163 0.034991 0.026937 57.52040 54.39447 0.000000	SD_AZN_D 20:58 4M03 2016M06 28 after adjustments Coefficient Std. Error 0.008925 0.019400 -0.972143 0.283976 0.640711 0.476624 0.042808 0.011207 0.001839 0.001208 -0.001931 0.001166 0.925163 Mean depender 0.034991 Akaike info crit 0.026937 Schwarz criterion 57.52040 Hannan-Quinn - 54.39447 0.000000 Lurbin-Watson	SD_AZN_D 20:58 4M03 2016M06 28 after adjustments Coefficient Std. Error t-Statistic 0.008925 0.019400 0.460057 -0.972143 0.283976 -3.423321 0.640711 0.476624 1.344271 0.042808 0.011207 3.819926 0.001839 0.001208 1.521712 -0.001931 0.001166 -1.656244 0.925163 Mean dependent var 0.925163 Mean dependent var 0.925163 Mean dependent var 0.034991 Akaike info criterion 0.026937 Schwarz criterion 57.52040 Hannan-Quinn criter. 54.39447 Durbin-Watson stat 0.000000

Analysis of the results shows that there have been some changes in the values of the indicators. This change is a result of the difference in moments when the moments used in the model were not used in the prediction.

Now let's look at the prediction results for the remaining moments:

Table 11

Each test interval is two times longer than the standard error ($\sigma^2 \approx 0,08$). Note that the closer the standard error is to zero, the more accurate the model prediction can be.

Now let's look at the following chart to compare the forecast of the USD / AZN exchange rate curve (Chart 1):

Here, the USD / AZN exchange rate curve is shown in blue, and the projected exchange rate curve is shown in red.

As you can see, the curve model obtained using the forecast was located at some distance from the curve itself. This difference is due to the fact that the model is not fully explained by the factors mentioned.

Conclusion

Thus, as a result of comparative testing of many tests using the Eviews software package, the optimal regression model was tested, which shows that the model covering the time segment 01.01.2013-01.10.2017 changed significantly depending on four factors. A separate analysis of the results of each test shows that the model residues are homoscedastic, do not depend on autocorrelation, and can be considered to be generally significant. At the end of the model, the most optimistic version was predicted.

References

- [1] E.G. Orudzhev, *Econometrics*, Baku, AFPolygraph, 2018, 384 p.
- [2] N.S. Eyyubova, *General theory of statistics*, Baku, AFPolygraph, 2014, 344 p.
- [3] D.N. Gujarati, Basic Econometrics, fifth edition. New York: McGraw-Hill, 2011, 922 p.
- [4] D.N. Gujarati, Econometrics by Example, New York: McGraw-Hill, 2012, 566 p.
- [5] D.N. Gujarati, Essentials of Econometrics, New York: McGraw-Hill, 2006, 616 p.
- [6] B.E. Hansen, *Econometrics*, New York: Journal of Econometrics, 2016, 381 p.
- [7] L.M. Mamedova, Analysis of the relationship between GDP and exports for Azerbaijan using the ADL-model of autoregression and lag distribution, Azerbaijan Tax Magazine, 3(129), 2016, 119-130.
- [8] S.A. Timofeev, V.N. Yuriev, Models for forecasting the dynamics of the currency course based on the analysis of the fundamental indicators of the economy, SPbSPU Scientific and Technical Reports, Economic Sciences, **2** (168), 2013, 146-152.
- [9] E.G. Orudzhev, A.E. Isazadeh, Comparative analysis of the relationship of the course of Azerbaijan manat and its main macroeconomic determinants, Actual problems of economics, 3(201), 2018, 94-104.

Elshar G. Orudzhev Baku State University, Baku, AZ 1148, Baku, Azerbaijan E-mail: elsharorucov63@mail.ru

Leyla M. Mamedova Baku State University, Baku, AZ 1148, Baku, Azerbaijan E-mail: l.mamedova2807@gmail.com

Orkhan E. Suleymanov Baku State University, Baku, AZ 1148, Baku, Azerbaijan E-mail: suleymanov_o@mail.ru

Received 03 September 2018 Accepted 08 November 2018